Grade 9 Mathematics Correlation between 1996 Curriculum and 2008 Curriculum ## NUMBER Number | 1996 Curriculum | 2008 Curriculum | |--|---| | Document and explain calculator keying sequences used to perform calculations involving rational numbers (A-2) | | | Give examples of numbers that satisfy the conditions of natural, whole, integral, and rational numbers, and show that these numbers comprise the rational number system (C-1) | | | Describe, orally and in writing, whether or not a number is rational (C-2) | 9.N.3. Demonstrate an understanding of rational numbers by comparing and ordering rational numbers. solving problems that involve arithmetic operations on rational numbers [C, CN, PS, R, T, V] | | Illustrate power, base, coefficient, and exponent, using rational numbers or variables as bases or coefficients (H-1) | 9.N.1. Demonstrate an understanding of powers with integral bases (excluding base 0) and whole- number exponents by representing repeated multiplication using powers using patterns to show that a power with an exponent of zero is equal to one solving problems involving powers [C, CN, ME, PS, R] | | Determine the value of powers with (non-negative) integral exponents, using the exponent laws (H-2,H-9) | 9.N.1. Demonstrate an understanding of powers with integral bases (excluding base 0) and whole- number exponents by representing repeated multiplication using powers using patterns to show that a power with an exponent of zero is equal to one solving problems involving powers [C, CN, ME, PS, R] | | Explain and apply the exponent laws for exponents with integral exponents • $x^m \cdot x^n = x^{m+n}$ • $x^m \div x^n = x^{m-n}, x \ne 0$ • $(x^m)^n = x^{mn}$ • $(xy)^m = x^m y^m$ | 9.N.2. Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole-number exponents. [C, CN, ME, PS, R, t] | | $\bullet \qquad \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}, y \neq 0$ | | | • $x^{\circ} = 1, x \neq 0$
• $x^{-n} = \frac{1}{x^{n}}, x \neq 0$
(H-3, H-8) | | | Understand and use the exponent laws to simplify expressions with variable bases and evaluate expressions with numerical bases (H-11) | | | Use a calculator to perform calculations involving scientific notation and exponent laws (H-12) | | | 1996 Curriculum | 2008 Curriculum | |---|---| | Give examples of situations where answers would involve the positive | 9.N.5. Determine the square root of positive rational numbers that are perfect | | (principal) square root, or both positive and negative square roots of a number | squares. | | (H-13) | [C, CN, PS, R, T] | | | | | | 9.N.6. Determine the approximate square root of positive rational numbers that | | | are non-perfect squares. | | | [C, CN, PS, R, T] | | Solve problems, using rational numbers in meaningful contexts (J-4) | 9.N.3. Demonstrate an understanding of rational numbers by | | | comparing and ordering rational numbers | | | solving problems that involve arithmetic operations on rational numbers | | | [C, CN, PS, R, T, V] | | | 9.N.4. Explain and apply the order of operations including exponents, with | | | and without technology. | | | [ME, PS, T] | ## Patterns and Relations ME- Mental Mathematics and Estimation V - Visualization T - Technology C – Communication PS – Problem Solving | 1996 Curriculum | 2006 Curriculum | |--|---| | Use logic and divergent thinking to present mathematical arguments in solving problems (A-1) | | | Identify constant terms, coefficients, and variables in polynomial expressions (C-3) | 9.PR.5. Demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to 2). [C, CN, R, V] | | Represent and justify the addition and subtraction of polynomial expressions, using concrete materials and diagrams (C-5) | 9.PR.6. Model, record, and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially, and symbolically (limited to polynomials of degree less than or equal to 2). [C, CN, PS, R, V] | | Perform the operations of addition and subtraction on polynomial expressions (C-6) | 9.PR.6. Model, record, and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially and symbolically (limited to polynomials of degree less than or equal to 2). [C, CN, PS, R, V] | | Represent multiplication of two monomials, and of a monomial and a polynomial, using concrete materials and diagrams (C-7) | 9.PR.7. Model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2) by monomials, concretely, pictorially, and symbolically. [C, CN, R, V] | | Find the product of two monomials, and of a monomial and a polynomial (C-8) | 9.PR.7. Model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2). by monomials, concretely, pictorially, and symbolically. [C, CN, R, V] | | Evaluate polynomial expressions, given the value(s) of the variable(s) (C-10) | | | Model situations that can be represented by first-degree equations (C-4) | 9.PR.1. Generalize a pattern arising from a problem-solving context using linear equations and verify by substitution. [C, CN, PS, R, V] | | Write equivalent forms of algebraic expressions, or equations with rational coefficients (C-9) | | | Illustrate the solution process for a first-degree, single-variable equation, using concrete materials or diagrams (E-1) | 9.PR.3. Model and solve problems, using linear equations of the form • $ax = b$ • $ax + b = c$ • $ax = b + cx$ • $a(x + b) = c$ • $ax + b = cx + d$ • $a(bx + c) = d(ex + f)$ • $\frac{a}{x} = b$, $x \neq 0$ where a, b, c, d, e and f are rational numbers. [C, CN, ME, PS, V] | | 1996 Curriculum | 2006 Curriculum | |--|--| | Solve and verify first-degree, single-variable equations of forms such as: | 9.PR.3. Model and solve problems, using linear equations of the form | | • $ax = b + cx$ | • $ax = b$ | | $\bullet a(x+b)=c$ | • $ax + b = c$ | | $\bullet ax + b = cx + d$ | • $ax = b + cx$ | | $\bullet a(bx+c) = d(ex+f)$ | $\bullet \ \ a(x+b)=c$ | | | $\bullet \ ax + b = cx + d$ | | $\bullet \qquad \frac{a}{x} = b, x \neq 0$ | $\bullet \ a(bx+c) = d(ex+f)$ | | where a, b, c, d, e, and f are all rational numbers (with a focus on integers), | • $\frac{a}{x} = b$, $x \neq 0$ | | and use equations of this type to model and solve problem situations (E-2) | where a, b, c, d, e and f are rational numbers. | | and use equations of this type to model and solve problem situations (L-2) | [C, CN, ME, PS, V] | | Solve, algebraically, first-degree inequalities with one variable, display the | 9.PR.4. Explain and illustrate strategies to solve single variable linear | | solutions on a number line, and test the solutions (E-3) | inequalities with rational number coefficients within a problem-solving | | | context. | | | [C, CN, ME, PS, R, V] | | Determine equivalent forms of algebraic expressions by identifying common | | | factors and by factoring trinomials of the form $x^2 + bx + c$ (H-4) | | | Represent multiplication, division, and factoring of monomials, binomials and | | | trinomials of the form $x^2 + bx + c$, using concrete materials and diagrams (H-5) | | | Find the quotient when a polynomial is divided by a monomial (H-6) | 9.PR.7. Model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2). by monomials, concretely, pictorially, and symbolically. [C, CN, R, V] | | Find the product of two monomials, a monomial and a polynomial and two binomials (H-7) | 9.PR.7. Model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2). by monomials, concretely, pictorially, and symbolically. [C, CN, R, V] | | Evaluate polynomial expressions, given the value(s) of the variable(s) (H-10) | | | | 9.PR.2. Graph linear relations, analyze the graph, and interpolate or extrapolate to solve problems. [C, CN, ME, PS, R, T, V] | | 1996 Curriculum | 2006 Curriculum | |---|--| | Recognize and draw the locus (set of points) in solving practical problems (D- | | | | | | Draw the plan and elevations of a 3-D object from sketches and models (D-2) | | | Sketch or build a 3-D object, given its plan and elevation views (D-3) | | | Recognize when, and explain why, two triangles are congruent, and use the properties of congruent triangles to solve problems (F-1) | | | Recognize when, and explain why, two triangles are similar, and use the properties of congruent triangles to solve problems (F-2) | 9.SS.3. Demonstrate an understanding of similarity of polygons. [C, CN, PS, R, V] | | Relate congruence to similarity in the context of triangles (F-3) | | | Explain the meaning of sine, cosine, and tangent ratios in right triangles (I-1) | | | Demonstrate the use of trigonometric ratios (sine, cosine, and tangent) in solving right triangles (I-2) | | | Calculate an unknown side or an unknown angle in a right triangle, using appropriate technology (I-3) | | | Model and then solve given problem situations involving one right triangle (I-4) | | | Calculate area and perimeter to solve design problems in two dimensions (J-1) | | | Relate expressions for volumes of pyramids to volumes of prisms, and volume of cones to volume of cylinders (J-2) | | | Calculate volume and surface area to solve problems in three dimensions (J-3) | 9.SS.2. Determine the surface area of composite 3-D objects to solve problems. [C, CN, ME, PS, R, V] | | Draw the image of a 2-D shape as a result of | | | a single transformation | | | • a dilation | | | • a combination of translations and/or reflections | | | (K-1) | | | Identify the single transformation that connects a shape with its image (K-2) | | | Demonstrate the congruence of a triangle with its | | | translation image | | | rotation image | | | reflection image | | | (K-3) | | | Demonstrate that a triangle and its dilatation image are similar (K-4) | | | 1996 Curriculum | 2006 Curriculum | |-----------------|--| | | 9.SS.1. Solve problems and justify the solution strategy using circle properties including The perpendicular from the centre of a circle to a chord bisects the chord The measure of the central angle is equal to twice the measure of the inscribed angle subtended on the same arc The inscribed angles subtended by the same arc are congruent A tangent to a circle is perpendicular to the radius at the point of tangency [C, CN, PS, R, T, V] | | | 9.SS.4. Draw and interpret scale diagrams of 2-D shapes. [CN, R, T, V] | | | 9.SS.5. Demonstrate an understanding of line and rotation symmetry. [C, CN, PS, V] | ## Statistics and Probability | 1996 Curriculum | 2006 Curriculum | |--|---| | Assess the strengths, weaknesses, and biases of samples and data collection methods (B-1) | 9.SP.1. Describe the effect of bias use of language ethics cost time and timing privacy cultural sensitivity on the collection of data. [C, CN, R, T] 9.SP.2. Select and defend the choice of using either a population or a sample of a population to answer a question. [C, CN, PS, R] | | Critique ways in which statistical information and conclusions are presented by the media and other sources (B-2) | [5, 52., 52.] | | Create scatterplots for discrete and continuous variables (B-3) | | | Interpret a scatterplot to determine if there is an apparent relationship (B-4) | | | Determine the line of best fit from a scatterplot for an apparent linear relationship, by • inspection • value to have large (expections are not supported) (P. 5) | | | • using technology (equations are not expected) (B-5) | | | Draw and justify conclusions from the line of best fit (B-6) Design, conduct, and report on an experiment to investigate a relationship between two variables (B-7) | 9.SP.3. Develop and implement a project plan for the collection, display, and analysis of data by • formulating a question for investigation • choosing a data collection method that includes social considerations • selecting a population or a sample • collecting the data • displaying the collected data in an appropriate manner • drawing conclusions to answer the question [C, PS, R, T, V] | | Recognize that decisions based on probability may be a combination of theorectical calculations, experimental results, and subjective judgements (G-1) | | | Demonstrate an understanding of the role of probability and statistics in society (G-2) | 9.SP.4. Demonstrate an understanding of the role of probability in society. [C, CN, R, T] | | Solve problems involving the probability of independent events (G-3) | |