First Nations Schools

October 20 \qquad
\qquad

In accordance with Manitoba Education policy, the purpose of this assessment is to inform parents/guardians of their child's achievement in key competencies in numeracy.

This report is not based on a single test, but on evidence of your child's achievement from ongoing assessment done as part of the normal teaching and learning process.

Note: Students need to be able to explain or show their thinking in all competencies (not just get the correct answer).

Competency Algebraic Reasoning Skills	Levels of Performance		
	Needs Ongoing Help	Approaching Expectations	Meeting Expectations
Student predicts an element in a repeating pattern.	Identifies the core of a repeating pattern. e.g., $O \square \Delta$ O $\square \Delta$ O $\square \Delta$ "Circle, square, triangle is the core."	Predicts an element in a repeating pattern using manipulatives or drawings to support his/her thinking. \qquad "The next element will be a triangle because I drew out the pattern."	Predicts an element in a repeating pattern making connections with numbers. e.g., $\mathrm{O} \square \Delta \mathrm{O} \square \Delta \mathrm{O} \square \Delta$ "The 12th element is a triangle because a triangle comes 3rd, 6th, and 9th and so the next will be 12 ." e.g., $\square \mathrm{O} \square \mathrm{O} \square \mathrm{O} \square \mathrm{O} \square \mathrm{O}$ "The 21st element will be a square. I doubled the pattern and added one more element, which would be a square." Relates number relationships to the pattern such as recognizing skip counting, and odd and even numbers to determine an element.
Student understands that the equal symbol represents an equality of the terms found on either side of the symbol.	Sees the equal symbol as only meaning "give me the answer" to a number sentence. $\text { e.g., } 15+2=$ \qquad Student believes the only answer that can be given on the right side of the equal sign is 17 . Student does not see that answers such as $17+0,2+15$, and $18-1$ are also correct.	\square Sees the equal symbol as meaning a balance between the two sides of the equation. e.g., $15+2=$ \qquad or \qquad $=15+2$ Student is able to give multiple answers on either the right or left side of the equal sign. Student knows that $15+2$ is the same as $3+14$ because both equal 17.	Understands and can explain the relationship between two different expressions. e.g., $15+2 \square 3+14$ \square is "=" since 14 is one less than 15 and 3 is one more than 2 , so both sides are the same. Student is able to compare both sides of the number sentence without adding the numbers.

Competency Number Sense	Levels of Performance		
	Needs Ongoing Help	Approaching Expectations	Meeting Expectations
Student understands that a given whole number may be represented in a variety of ways (to 100).	Represents numbers from 1 to 20 in a variety of ways. Represents numbers using manipulatives, words, pictures, and symbols.	Represents numbers from 1 to 100 in a variety of ways including: Part-part-whole using multiples of 10 . e.g., 45 is $40+5$, or $10+10+10+10+5$	\square Represents numbers from 1 to 100 in a variety of ways including: Part-part-whole using non-multiples of 10 . e.g., 45 is $43+2$ Makes connection to real-life situations. e.g., 45 can be 1 quarter and 2 dimes or 4 dimes and 1 nickel. e.g., 45 can be my age of 8 plus 37
Student uses mental math strategies to determine answers to addition and subtraction questions to 18.	Relies on counting (count all, count on, and count back). e.g., $3+5$ is $3,4,5,6,7,8 \ldots$ Uses manipulatives such as fingers and counters.	- Knows 1 more, 1 less, 2 more, and 2 less. e.g., 1 more than 3 is $4 ; 2$ less than 5 is 3 Knows doubles to $9+9$. e.g., $4+4,5+5,7+7$ Knows addition facts with zero. Uses count on and count back by 1,2 , and 3. e.g., $8+2$ is $8,9,10$	Knows addition and related subtraction facts to 10 and doubles to $9+9$. e.g., $4+3=7,7-3=4,7-4=3 ; 8+8=16$ Knows addition and subtraction facts with zero. Uses known doubles to $9+9$ and known facts to 10 to determine other facts. e.g., for $4+6$, think $5+5=10$ e.g., for $7+5$, think $7+3+2 \rightarrow 10+2=12$, or think $5+5+2 \rightarrow 10+2=12$, or think $7+7-2 \rightarrow 14-2=12$ Uses the inverse relationship between addition and subtraction. e.g., since $5+3=8$, then $8-5=3$ and $8-3=5$ (fact families)

Comments (optional)

Teacher Signature: Principal Signature:

Student Name: \qquad School Name: \qquad

