Manitoba Education and Advanced Learning Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test.

ISBN: 978-0-7711-5847-6

1. Mathematics—Examinations, questions, etc.
2. Educational tests and measurements—Manitoba.
3. Mathematics—Study and teaching (Secondary)—Manitoba.
4. Pre-calculus—Study and teaching (Secondary)—Manitoba.
510.76

Manitoba Education and Advanced Learning
School Programs Division
Winnipeg, Manitoba, Canada

Permission is hereby given to reproduce this document for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Text Book Bureau. Order online at <www.mtbb.mb.ca>.

This resource will also be available on the Manitoba Education and Advanced Learning website at <www.edu.gov.mb.ca/k12/assess/archives/index.html>.

Websites are subject to change without notice.

Disponible en français.

Available in alternate formats upon request.
Table of Contents

General Marking Instructions ... 1

Scoring Guidelines .. 5
 Booklet 1 Questions ... 7
 Booklet 2 Questions ... 45
 Answer Key for Selected Response Questions .. 46

Appendices ... 111
 Appendix A: Marking Guidelines .. 113
 Appendix B: Irregularities in Provincial Tests ... 115
 Irregular Test Booklet Report .. 117
 Appendix C: Table of Questions by Unit and Learning Outcome 119
Please do not make any marks in the student test booklets. If the booklets have marks in them, the marks will need to be removed by departmental staff prior to sample marking should the booklet be selected.

Please ensure that
- the booklet number and the number on the Answer/Scoring Sheet are identical
- students and markers use only a pencil to complete the Answer/Scoring Sheets
 - the totals of each of the four parts are written at the bottom
 - each student’s final result is recorded, by booklet number, on the corresponding Answer/Scoring Sheet
 - the Answer/Scoring Sheet is complete
 - a photocopy has been made for school records

Once marking is completed, please forward the Answer/Scoring Sheets to Manitoba Education and Advanced Learning in the envelope provided (for more information see the administration manual).

Marking the Test Questions
The test is composed of constructed response questions and selected response questions. Constructed response questions are worth 1 to 5 marks each, and selected response questions are worth 1 mark each. An answer key for the selected response questions can be found at the beginning of the section “Booklet 2 Questions.”

To receive full marks, a student’s response must be complete and correct. Where alternative answering methods are possible, the Marking Guide attempts to address the most common solutions. For general guidelines regarding the scoring of students’ responses, see Appendix A.

Irregularities in Provincial Tests
During the administration of provincial tests, supervising teachers may encounter irregularities. Markers may also encounter irregularities during local marking sessions. Appendix B provides examples of such irregularities as well as procedures to follow to report irregularities.

If an Answer/Scoring Sheet is marked with “0” and/or “NR” only (e.g., student was present but did not attempt any questions), please document this on the Irregular Test Booklet Report.
Assistance

If, during marking, any marking issue arises that cannot be resolved locally, please call Manitoba Education and Advanced Learning at the earliest opportunity to advise us of the situation and seek assistance if necessary.

You must contact the Assessment Consultant responsible for this project before making any modifications to the answer keys or scoring rubrics.

Youyi Sun
Assessment Consultant
Grade 12 Pre-Calculus Mathematics
Telephone: 204-945-7590
Toll-Free: 1-800-282-8069, extension 7590
Email: youyi.sun@gov.mb.ca
Communication Errors

The marks allocated to questions are primarily based on the concepts and procedures associated with the learning outcomes in the curriculum. For each question, shade in the circle on the Answer/Scoring Sheet that represents the marks given based on the concepts and procedures. A total of these marks will provide the preliminary mark.

Errors that are not related to concepts or procedures are called “Communication Errors” (see Appendix A) and will be tracked on the Answer/Scoring Sheet in a separate section. There is a ½ mark deduction for each type of communication error committed, regardless of the number of errors per type (i.e., committing a second error for any type will not further affect a student’s mark), with a maximum deduction of 5 marks from the total test mark.

The total mark deduction for communication errors for any student response is not to exceed the marks given for that response. When multiple communication errors are made in a given response, any deductions are to be indicated in the order in which the errors occur in the response, without exceeding the given marks.

The student’s final mark is determined by subtracting the communication errors from the preliminary mark.

Example: A student has a preliminary mark of 72. The student committed two E1 errors (½ mark deduction), four E7 errors (½ mark deduction), and one E8 error (½ mark deduction). Although seven communication errors were committed in total, there is a deduction of only 1½ marks.

Example: Marks assigned to the student.

<table>
<thead>
<tr>
<th>Marks Awarded</th>
<th>Booklet 1</th>
<th>Selected Response</th>
<th>Booklet 2</th>
<th>Communication Errors (Deduct)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>7</td>
<td>40</td>
<td>1½</td>
<td></td>
</tr>
<tr>
<td>Total Marks</td>
<td>36</td>
<td>9</td>
<td>45</td>
<td>maximum deduction of 5 marks</td>
<td>90</td>
</tr>
</tbody>
</table>
Question 1

Use the information in the diagram to determine the value of the arc length “s”, given the central angle of \(56^\circ\).

Solution

\[
\theta = 56^\circ \times \frac{\pi}{180^\circ}
\]

\[
\theta = \frac{56\pi}{180} \text{ or } \frac{14\pi}{45}
\]

\[
s = \theta r
\]

\[
s = \left(\frac{14\pi}{45}\right)(3\text{ m})
\]

\[
s = \frac{14\pi}{15}\text{ m or 2.932 m}
\]

1 mark for conversion

1 mark for substitution

2 marks
Exemplar 1

\[S = \theta r \]
\[= (56^\circ)(3) \]
\[S = 168 \text{ m} \]

1 out of 2
+ 1 mark for substitution

Exemplar 2

\[S = \theta r \]
\[= 56^\circ \left(\frac{\pi}{180} \right) = \frac{56\pi}{180} = \frac{28\pi}{90} \]
\[S = \left(\frac{18\pi}{45} \right)(3) \]
\[S = \frac{54\pi}{45} \]

2 out of 2
award full marks
E5 (missing unit of measure)
Question 2

Solve \(\tan^2 \theta - 5 \tan \theta + 4 = 0 \) where \(\theta \in \mathbb{R} \).

Solution

Method 1

\((\tan \theta - 1)(\tan \theta - 4) = 0\)

\[\tan \theta = 1 \quad \tan \theta = 4\]

\[\theta = 1.3258 \quad \theta = 1.326, 4.467\]

\[\theta = 0.785, 3.927\]

\[\theta = \frac{\pi}{4}, \frac{5\pi}{4}\]

1 mark for general solution

1 mark for solving for \(\tan \theta \) (½ mark for each branch)

2 marks (½ mark for each value of \(\theta \))

Method 2

\((\tan \theta - 1)(\tan \theta - 4) = 0\)

\[\tan \theta = 1 \quad \tan \theta = 4\]

\[\theta = 1.3258 \quad \theta = 1.326\]

\[\theta = 0.785\]

\[\theta = \frac{\pi}{4}\]

1 mark for general solution

1 mark for solving for \(\tan \theta \) (½ mark for each branch)

2 marks (1 mark for each value of \(\theta \))
Exemplar 1

let \(\tan \theta = x \)

\[
\begin{align*}
 x^2 - 5x + 4 &= 0 \\
 (x - 4)(x - 1) &= 0 \\
 x - 4 &= 0 \quad \text{or} \quad x - 1 = 0 \\
 x &= 4 \quad \text{or} \quad x = 1
\end{align*}
\]

\(\tan \theta = 4 \) \(\text{out of unit circle} \)

\(\tan \theta = 1 \)

\(\frac{\pi}{4}, \text{or} 45^\circ \) \(45^\circ + \pi k, \text{UER} \)

\(\frac{5\pi}{4}, \text{or} 225^\circ \)

2 out of 4

+ 1 mark for solving for \(\tan \theta \)
+ 1 mark for values of \(\theta \)
E3 (variable omitted in lines 1 and 6)
E2 (changing an equation to an expression in line 7)
Exemplar 2

\[\tan^2 \theta - 5 \tan \theta + 4 = 0 \]

\[(\tan \theta - 1)(\tan \theta - 5) = 0 \]

\[\tan \theta = 1 \quad \text{or} \quad \tan \theta = 5 \]

\[\theta_1 = 0.785 \quad \theta_2 = 1.3734 \]

\[\theta_1 = 0.7853 \quad \theta_2 = 1.3734 \]

\[\theta_3 = 0.7853 + \pi \quad \theta_2 = 1.3734 + \pi \]

\[\theta_3 = 3.9269 \quad \theta_4 = 4.5150 \]

\[2\frac{1}{2} \text{ out of } 4 \]

+ 1 mark for solving for \(\tan \theta \)
+ 2 marks for consistent values of \(\theta \)
- ½ mark for arithmetic error in line 2

Exemplar 3

\[\tan \theta = x \]

\[x^2 - 5x + 4 = 0 \]

\[(x-4)(x-1) = 0 \]

\[x = 4 \quad x = 1 \]

\[\tan \theta = 4 \quad \tan \theta = 1 \]

\[\theta = 75.964^\circ \quad \theta = 45^\circ \]

2 out of 4

+ 1 mark for solving for \(\tan \theta \)
+ 1 mark for values of \(\theta \)
Question 3

R8, R10

Solve:

\[2^{5x} = 3(5)^{x-3} \]

Solution

\[
\log_{10} 2^{5x} = \log_{10} [3(5)^{x-3}]
\]

\[
5x \log_{10} 2 = \log_{10} 3 + (x - 3) \log_{10} 5
\]

\[
5x \log_{10} 2 = \log_{10} 3 + x \log_{10} 5 - 3 \log_{10} 5
\]

\[
5x \log_{10} 2 - x \log_{10} 5 = \log_{10} 3 - 3 \log_{10} 5
\]

\[
x (5 \log_{10} 2 - \log_{10} 5) = \log_{10} 3 - 3 \log_{10} 5
\]

\[
x = \frac{\log_{10} 3 - 3 \log_{10} 5}{5 \log_{10} 2 - \log_{10} 5}
\]

\[
x = -2.009
\]

½ mark for applying logarithms

1 mark for product rule

1 mark for power rule

½ mark for collecting like terms

½ mark for isolating \(x\)

½ mark for evaluating a quotient of logarithms

4 marks
Exemplar 1

\[
\log(2^{5x}) = \log(3(5^{x-3})) \\
6^{x}\log 2 = \infty - 3 \log(3 - 5) \\
5^{x}\log 2 = \infty - 3 \log(15)
\]

1½ out of 4

+ ½ mark for applying logarithms
+ 1 mark for power rule
E7 (notation error in line 2)

Exemplar 2

\[
(5x)\log 2 = \log 3 + (x-3)\log 5 \\
(5x)\log 2 - (x+3)\log 5 = \log 3 \\
(5x) - (x+3) = \frac{\log 3}{\log 2 - \log 5} \\
4x + 3 = -1, 1990 \\
4x = 1, 8010 \\
x = 0, 4503
\]

2½ out of 4

+ ½ mark for applying logarithms
+ 1 mark for product rule
+ 1 mark for power rule
+ ½ mark for evaluating a quotient of logarithms
− ½ mark for arithmetic error in line 5
\[
2^{5x} = 15^{x-3} \\
\log a^{5x} = \log 15^{x-3} \\
5 \log a = (x-3) \log 15 \\
5 \log a = x \log 15 - 3 \log 15 \\
5 \log a - x \log 15 = -3 \log 15 \\
x \frac{(5 \log a - \log 15)}{5 \log a - \log 15} = \frac{-3 \log 15}{5 \log a - \log 15} \\
x = -10.722
\]

3 out of 4
+ ½ mark for applying logarithms
+ 1 mark for power rule
+ ½ mark for collecting like terms
+ ½ mark for isolating \(x\)
+ ½ mark for evaluating a quotient of logarithms
This page was intentionally left blank.
David and Sarah are in a class of 10 boys and 8 girls.
A committee of 3 boys and 2 girls is to be selected from the students in this class.
Determine the number of possible committees if David and Sarah cannot be on the same committee.

Solution

Method 1
All: \(\binom{10}{3} \times \binom{8}{2} = 3360 \)
1 mark for all possible committees
Both: \(\binom{9}{2} \times \binom{7}{1} = 252 \)
1 mark for both on the committee
\(3360 - 252 = 3108 \)
1 mark for subtraction of cases

Method 2
Case 1: David, not Sarah \(\binom{9}{2} \times \binom{7}{2} = 756 \)
½ mark for Case 1
Case 2: Sarah, not David \(\binom{9}{3} \times \binom{7}{1} = 588 \)
½ mark for Case 2
Case 3: Neither David nor Sarah \(\binom{9}{3} \times \binom{7}{2} = 1764 \)
1 mark for Case 3
\(756 + 588 + 1764 = 3108 \)
1 mark for addition of cases

3 marks

3 marks
Exemplar 1

Case #1
\[\binom{10}{3} \cdot \binom{9}{2} = 30240 \]

Case #2
\[\binom{9}{3} \cdot \binom{7}{2} = 28224 \]

Case # neither one
\[\binom{9}{3} \cdot \binom{7}{6} = 21168 \]

\[\text{79632} \]

1 out of 3

Method 2
+ 1 mark for Case 3
+ 1 mark for addition of cases
− 1 mark for concept error (permutations instead of combinations)

Exemplar 2

Case 1
Both are on the committees
\[\binom{10}{3} \cdot \binom{8}{2} = 120 \cdot 28 = 3360 \]

Case 2
Neither are on the committees
\[\binom{9}{3} \cdot \binom{7}{2} = 84 \cdot 7 = 588 \]

(Both)−(neither) = 3360 − 588 = 2772

2 out of 3

+ 1 mark for all possible committees
+ 1 mark for subtraction of cases
Exemplar 3

\[P(\text{David only}) + P(\text{Sarah only}) + P(\text{no David, no Sarah}) \]
\[= \binom{9}{2} \cdot \binom{8}{1} + \binom{10}{3} \cdot \binom{7}{1} + \binom{9}{3} \cdot \binom{7}{2} \]
\[= (36 \cdot 28) + (120 \cdot 7) + (84 \cdot 21) \]
\[= 1008 + 840 + 1764 \]
\[= 3612 \text{ committee possibilities} \]

2 out of 3

+ 1 mark for Case 3
+ 1 mark for addition of cases

Exemplar 4

David: \(\binom{10}{3} \cdot \binom{7}{2} = 2520 \)
Sarah: \(\binom{9}{3} \cdot \binom{8}{2} = 2352 \)
\[2520 + 2352 = 4872 \]

1 out of 3

+ 1 mark for addition of cases
This page was intentionally left blank.
Question 5

In the binomial expansion of \(\left(\frac{3}{x^2} - x^5 \right)^{10} \), simplify the 7th term.

Solution

\[
t_7 = 10 \binom{6}{4} \left(\frac{3}{x^2} \right)^4 \left(-x^5 \right)^6
\]

\[
t_7 = 10 \binom{6}{4} \left(\frac{81}{x^8} \right) x^{30}
\]

\[
t_7 = 17010x^{22}
\]

2 marks (1 mark for \(\binom{6}{4} \), \(\frac{3}{x^2} \), \(-x^5 \) for each term, ½ mark for each consistent factor)

1 mark for simplification (½ mark for coefficient, ½ mark for exponent)

3 marks
Exemplar 1

\[t_{k+1} = C \cdot d^{n-k} \cdot b^k \]

\[t_{g+1} = C \cdot \left(\frac{3}{x^5} \right)^{10-7} \cdot (x^7) \]

\[= 1080 \cdot \left(\frac{3}{x^5} \right)^3 \cdot (x^3) \]

\[= 1080 \cdot \left(\frac{3}{x^2} \right) \cdot (x^2) \]

\[= \frac{1080}{x^5} \cdot (x^3) \]

\[= 1080x^{13} \]

\[= 1080x^{13} \cdot x^{-5} \]

\[= 1080x^7 \]

\[= 1080x^7 \]

\[\frac{1}{2} \text{ out of } 3 \]

+ \(\frac{1}{2} \) mark (\(\frac{1}{2} \) mark for each consistent factor)
Exemplar 2

\[\binom{6+1}{10} \cdot \frac{3}{x^2} \cdot \left(\frac{1}{x^4}\right)^6 \]

\[= 210 \cdot \frac{3}{x^2} \cdot \left(\frac{1}{x^4}\right)^6 \]

\[= 210 \cdot \frac{81}{x^6} \cdot \left(\frac{1}{x^4}\right)^6 \]

\[= \frac{17010}{x^6} \cdot \left(\frac{1}{x^4}\right)^6 \]

\[= \frac{17010}{x^{17}} \]

2 out of 3

+ 2 marks (1 mark for \(\binom{10}{6} \), \(\frac{1}{2} \) mark for each consistent factor)

E4 (missing brackets but still implied in line 1)

Exemplar 3

\[t_{k+1} = \binom{k}{k} a^{n-m} b^k \]

\[t_{k+1} = \binom{10}{6} a^{10-6} b^c \]

\[= \binom{10}{6} \left(\frac{3}{x^2}\right)^4 \left(\frac{1}{x^5}\right)^c \]

\[= 210 \left(\frac{81}{x^2}\right) \left(\frac{1}{x^1}\right) \]

\[= 210 \cdot 81 x^5 \]

\[= 17010 x^5 \]

2 out of 3

+ 1 mark for \(\binom{10}{6} \)

+ \(\frac{1}{2} \) mark for \(\left(\frac{3}{x^2}\right)^4 \)

+ \(\frac{1}{2} \) mark for simplification of coefficient
This page was intentionally left blank.
A lake affected by acid rain has a pH of 4.4.
A person suffering from heartburn has a stomach acid pH of 1.2.
The pH of a solution is defined as $\text{pH} = -\log[H^+]$ where $[H^+]$ is the hydrogen ion concentration.
How many times greater is the hydrogen ion concentration of the stomach than that of the lake?
Express your answer as a whole number.

Solution

Method 1

\[
\begin{align*}
\text{pH} &= -\log[H^+] \\
-\text{pH} &= \log[H^+] \\
[H^+] &= 10^{-\text{pH}} \\
\frac{[H^+]}{[H^+]}_{\text{stomach}} &= \frac{10^{-1.2}}{10^{-4.4}} \\
&= 10^{3.2} \\
&= 1584.9 \\
&= 1585
\end{align*}
\]

Method 2

Lake

\[
\begin{align*}
4.4 &= -\log[H^+] \\
-4.4 &= \log[H^+] \\
10^{-4.4} &= [H^+]
\end{align*}
\]

Stomach

\[
\begin{align*}
1.2 &= -\log[H^+] \\
-1.2 &= \log[H^+] \\
10^{-1.2} &= [H^+]
\end{align*}
\]

\[
\frac{[H^+]}{[H^+]}_{\text{stomach}} = \frac{10^{-1.2}}{10^{-4.4}} \\
&= 10^{3.2} \\
&= 1585
\]

[2 marks]
Exemplar 1

\[\frac{4.4}{1.2} = -\log[H^+] \]
\[\log_{10}4.4 = -\log[H^+] \]
\[0.648 = -\log[H^+] \]
\[-\log(0.648) = H^+ \]
\[H^+ = 0.191 \]

\[1.101 \div 0.191 = \boxed{5.76} \text{ times bigger} \]

1 out of 2
+ 1 mark for comparison
E6 (rounding too early in line 3)

Exemplar 2

\[\text{Lake} \]
\[\text{pH} = -\log[H^+] \]
\[-4.4 = -\log[H^+] \]
\[-4.4 = \log[H^+] \]
\[10^{-4.4} = [H^+] \]

\[\frac{10^{-4.4}}{10^{-1.2}} \]

\[10^{-3.2} \text{ time greater} \]

1 out of 2
+ 1 mark for exponential form
Exemplar 3

acid rain 4.4

\[p\text{H} = -\log (H^+) \]
\[4.4 = -\log (H^+) \]
\[10^{4.4} = H^+ \]
\[2.5118 \times 10^4 = H^+ \]

stomach acid 1.2

\[p\text{H} = -\log (H^+) \]
\[1.2 = -\log (H^+) \]
\[10^{1.2} = H^+ \]
\[15.849 = H^+ \]

The hydrogen ion concentration is 2.5103 \times 10^4 more concentrated.

½ out of 2

+ 1 mark for exponential form
− ½ mark for arithmetic error in lines 4 and 9

Exemplar 4

\[10^{3.2} \]

= 1585

2 out of 2
This page was intentionally left blank.
Solve the following equation algebraically over the interval $[0, 2\pi]$.

$$\cos 2\theta - 3\sin \theta - 2 = 0$$

Solution

$$\left(1 - 2\sin^2 \theta\right) - 3\sin \theta - 2 = 0$$

$$-2\sin^2 \theta - 3\sin \theta - 1 = 0$$

$$2\sin^2 \theta + 3\sin \theta + 1 = 0$$

$$(2\sin \theta + 1)(\sin \theta + 1) = 0$$

$$\sin \theta = -\frac{1}{2}, \quad \sin \theta = -1$$

$$\theta = \frac{7\pi}{6}, \quad \frac{11\pi}{6}, \quad \theta = \frac{3\pi}{2}$$

1 mark for correct substitution of an appropriate identity

1 mark for solving for $\sin \theta$ ($\frac{1}{2}$ mark for each branch)

2 marks for solutions (1 mark for each branch; $\frac{1}{2}$ mark for each value in the left branch)

4 marks
Exemplar 1

\[
\begin{align*}
\cos 2\theta &= 1 - 2\sin^2 \theta \\
-3\sin^4 \theta - 3\sin \theta - 2 &= 0 \\
3\sin^2 \theta - 3\sin \theta + 1 &= 0 \\
(\sin \theta - 3)(3\sin \theta - 1) &= 0 \\
\sin \theta &= \frac{1}{3} \\
\sin \theta &= \frac{1}{3} \\
\theta &= \frac{\pi}{6}
\end{align*}
\]

3 out of 4

+ 1 mark for correct substitution of an appropriate identity
+ 1 mark for solving for \(\sin \theta \)
+ 2 marks for solutions
- \(\frac{1}{2} \) mark for arithmetic error in line 3
- \(\frac{1}{2} \) mark for arithmetic error in line 4
E2 (changing an equation to an expression in line 2)
E7 (notation error in line 2)

Exemplar 2

\[
\begin{align*}
\cos 2\theta &= 3\sin \theta - 2 \cdot \theta \\
1 - 2\sin^2 \theta &= 3\sin \theta - 2 \cdot \theta \\
2\sin^2 \theta - 3\sin \theta + 1 &= 0 \\
(2\sin \theta - 1)(\sin \theta + 1) &= 0 \\
-2\sin \theta + 1 &= 0 \\
\sin \theta &= \frac{1}{2} \\
\sin \theta &= \frac{1}{2} \\
\theta &= \frac{\pi}{6}
\end{align*}
\]

2 1/2 out of 4

+ 1 mark for correct substitution of an appropriate identity
+ ½ mark for solving for \(\sin \theta \)
+ 1 mark for solution in right branch
E2 (changing an equation to an expression in line 4)
Question 8

Explain how the value of n affects the behaviour of the graph of the polynomial function $p(x) = (x + 3)(x - 1)^n$, as $p(x)$ approaches the x-intercept at $x = 1$.

Solution

If n is even, the graph will turn at the x-axis at $x = 1$.
If n is odd, the graph will cross the x-axis at $x = 1$.

or

As n increases, $p(x)$ will become flatter around the intercept at $x = 1$.

1 mark
Exemplar 1

The value “n” will change the multiplicity of the function, therefore depending on what the “n” value is the graph will look different.

½ out of 1

award full marks
- ½ mark for lack of clarity in explanation

Exemplar 2

If n is odd, the graph will cross the x-axis at x = 1.

½ out of 1

award full marks
- ½ mark for lack of clarity in explanation

Exemplar 3

* if (n) is an odd number that means the (x=1) will just touch the intercepts.
* And if (n) is an even number that means (x=1) will cross the intercepts.

0 out of 1
Question 9

Sketch the angle -320° in standard position.

Solution

1 mark for angle drawn in quadrant I

Note(s):
- If directional arrow is not indicated, it is a communication error, E1 (final answer not stated).
Exemplar 1

1 out of 1

award full marks
E1 (final answer not stated)

Exemplar 2

0 out of 1
Given the graph of $y = f(x)$, explain how to graph $y = f(-x)$.

Solution

Multiply the x-coordinates by -1.

or

Reflect the graph over the y-axis.
Exemplar 1

Since the x is now negative, it would be a flip over the x-axis. So, you would flip below the x-axis line, so any positive numbers become negative.

0 out of 1

Exemplar 2

You have to divide the x values by -1.

1 out of 1

Exemplar 3

0 out of 1
Explain how the graph of \(y = \frac{3(x - 1)}{(x - 1)} \) is different than the graph of \(y = 3 \).

Solution

There is a point of discontinuity (hole) when \(x = 1 \) on the graph of \(y = \frac{3(x - 1)}{(x - 1)} \). 1 mark
Exemplar 1

The graph of \(\frac{3(x-1)}{(x-1)} \) will have non permissible values, as you cannot divide by zero, while the graph of \(y = 3 \) does not have any non permissible values.

Exemplar 2

It is not different. \(y = 3 \) is the same as \(y = \frac{3(x-1)}{(x-1)} \) because the \((x-1)\) cancels itself.

\[
y = 3 \\
y = \frac{3(x-1)}{(x-1)} \\
y = \frac{3}{1} \quad y = 3
\]

0 out of 1
Given the graph of $f(x)$, sketch the graph of $g(x) = 2f(3x)$.

Solution

1 mark for horizontal stretch/compression
1 mark for vertical stretch

2 marks
Exemplar 1

1½ out of 2
award full marks
- ½ mark for arithmetic error (one incorrect point)

Exemplar 2

1 out of 2
+ 1 mark for vertical stretch
E9 [coordinate point labelled incorrectly (9, 4)]
Determine the equation of the radical function represented by the graph.

Solution

\[y = 2\sqrt{x-1} - 2 \]

1 mark for vertical stretch
1 mark for horizontal translation
1 mark for vertical translation

or

\[y = \sqrt{4(x-1)} - 2 \]

1 mark for horizontal compression
1 mark for horizontal translation
1 mark for vertical translation

3 marks
Exemplar 1

\[
\frac{y}{\sqrt{y}} = x
\]

\[
y = \sqrt{2x - 1} - 2
\]

1 out of 3
+ 1 mark for vertical translation

Exemplar 2

\[
f(x) = \log_2(x - 1) - 2
\]

1 out of 3
+ 1 mark for horizontal translation
+ 1 mark for vertical translation
– 1 mark for concept error (logarithmic function instead of radical function)
This page was intentionally left blank.
Answer Key for Selected Response Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Learning Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>D</td>
<td>P1</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>T2</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>R13</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>T4</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>P4</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>R12</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>R7</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>R4</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>R7, R8</td>
</tr>
</tbody>
</table>
Question 14

There are 2 types of pencils, 3 colours of highlighters, and 5 styles of pens.
If you must select one of each to form a set, how many different sets of writing instruments are possible?

a) 10
b) 11
c) 25
d) 30

Question 15

The point \(P(\theta) \) lies on the unit circle. What are the coordinates of the point \(P \) if \(\theta = 120^\circ \) ?

a) \(\left(\frac{-1}{2}, \frac{\sqrt{3}}{2} \right) \)

b) \(\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2} \right) \)

c) \(\left(\frac{-\sqrt{3}}{2}, \frac{1}{2} \right) \)

d) \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \)
Question 16

Identify the function that has a domain of \(\{x | x \geq 7\} \) and a range of \(\{y | y \geq 0\} \).

a) \(f(x) = \sqrt{x} + 7 \)
b) \(f(x) = \sqrt{x} - 7 \)
c) \(f(x) = \sqrt{x} + 7 \)
d) \(f(x) = \sqrt{x} - 7 \)

Question 17

Using \(y = -10 \cos(B(x - C)) + D \), the value of C that corresponds to the following graph is:

a) 5
b) 10
c) 15
d) 20
Given the following row of Pascal’s Triangle, identify the binomial expansion with these coefficients.

\[1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1 \]

a) \((x + y)^4\)

b) \((x + y)^5\)

c) \((x + y)^6\)

d) \((x + y)^7\)

Identify the graph of the function \(f(x) = -(x - 2)(x - 1)^2(x + 1)\).

a)

b)

c)

d)
Question 20

Determine the value of $\log_9 (\log_3 27)$.

a) $\frac{1}{3}$

b) $\frac{1}{2}$

c) 2

d) 3

Question 21

If (x, y) is a point on the graph of $y = f(x)$, identify the coordinates of this point on the graph of $g(x) = f(2x) + 5$.

a) $\left(\frac{x}{2}, y + 5 \right)$

b) $(2x, y + 5)$

c) $\left(\frac{x}{2}, y - 5 \right)$

d) $\left(\frac{x}{2} - 5, y \right)$

Question 22

Identify an equivalent expression for $1 + \log_2 5$.

a) $\log_2 5$

b) $\log_2 7$

c) $\log_2 10$

d) $\log_2 11$
This page was intentionally left blank.
Question 23

Solve:

\[2\log_4 x - \log_4 (x + 3) = 1 \]

Solution

\[2\log_4 x - \log_4 (x + 3) = 1 \]

\[\log_4 \left(\frac{x^2}{x + 3} \right) = 1 \]

1 mark for power rule

1 mark for quotient rule

\[4^1 = \frac{x^2}{x + 3} \]

1 mark for exponential form

\[4x + 12 = x^2 \]

\[x^2 - 4x - 12 = 0 \]

\[(x - 6)(x + 2) = 0 \]

\[x = 6 \quad x = -2 \]

½ mark for solving for \(x \)

½ mark for rejecting extraneous root

4 marks
Exemplar 1

\[
2 \log_4 \left(\frac{x}{x+3} \right) = 1
\]
\[
\log_4 \left(\frac{x}{x+3} \right) = \frac{1}{2}
\]
\[
\frac{x}{x+3} = 4^{\frac{1}{2}}
\]
\[
\frac{x}{x+3} = 2
\]
\[
x = 2(x+3)
\]
\[
x = 2x + 6
\]
\[
x = -6
\]

2½ out of 4

+ 1 mark for quotient rule
+ 1 mark for exponential form
+ ½ mark for solving for \(x\)
Exemplar 2

\[8 \log_4 \left(\frac{x}{x+3} \right)^2 = 1\]

\[\log_4 (-6+3)\]

\[\log_4 (-3) = \text{undefined.}\]

\[4^2 = \left(\frac{x}{x+3} \right)^2\]

\[4 = \frac{x^2}{(x^2+6x+9)}\]

\[\frac{1}{x^2} + 2x + 3b = x^2\]

\[3x^2 + 2ux + 3b\]

\[3 \left(x^2 + 8x + 12 \right) + \frac{12 + 8}{6, 2}\]

\[3 (x+6) (x+2)\]

\[x = -6 \quad \left[x = -2 \right]\]

\[1 \log_4 (-2+3) = 1 \log_4 (1) \checkmark\]

\[1 \log_4 (-2)^2 = 1 \log_4 (4) \checkmark\]

2½ out of 4

+ 1 mark for quotient rule
+ 1 mark for exponential form
+ ½ mark for solving for \(x\)
E2 (changing an equation to an expression in lines 5 and 6)
This page was intentionally left blank.
The following transformations are applied to $f(x)$, resulting in a new function, $g(x)$.

- reflection over the y-axis
- horizontal translation of 3 units to the right
- vertical translation of 4 units down

Write the equation of $g(x)$ in terms of $f(x)$.

Solution

$$g(x) = f(-(x - 3)) - 4$$

1 mark for horizontal shift
1 mark for vertical shift
1 mark for reflection

or

$$g(x) = f(-x + 3) - 4$$

3 marks
Exemplar 1

\[g(x) = f(-x - 3) - 4 \]

2 out of 3
+ 1 mark for vertical shift
+ 1 mark for reflection

Exemplar 2

\[g(x) = (-x - 3)^{-1} \]

1 out of 3
+ 1 mark for vertical shift
+ 1 mark for reflection
− 1 mark for concept error \[g(x) \text{ not shown as a transformation of } f(x) \]

Exemplar 3

\[g(x) = f(-x - 3) - 4 \]

3 out of 3
award full marks
E7 (notation error)
The height of a bicycle pedal as the bicycle is moving at a constant speed can be represented by the following function:

\[h(t) = 15 \cos \frac{2\pi}{5} t + 30 \]

where \(h \) is the height of the pedal above the ground, in cm, and \(t \) is the time, in seconds.

a) Sketch a graph of at least one period of this function, where \(t \geq 0 \).

b) Determine the height of the bicycle pedal at 7.5 seconds.

Solution

a)

\[\text{Amplitude} = 15 \quad 1 \text{ mark for amplitude} \]

\[\text{Period} = \frac{2\pi}{5} \quad \frac{2\pi}{5} = \frac{2\pi}{5} = 5 \quad 1 \text{ mark for period} \]

\[\text{Vertical Shift} = 30 \quad 1 \text{ mark for vertical shift} \]

b) From the graph:

\[h(t) = 15 \text{ cm} \]

or

From the equation:

\[h(t) = 15 \cos \frac{2\pi}{5} (7.5) + 30 \]

\[= 15 \cos 3\pi + 30 \]

\[= 15(-1) + 30 \]

\[= 15 \text{ cm} \]
Exemplar 1

a)

\[A = 15 \]

\[B = \frac{2\pi}{5} \]

Midline \(= 30 \)

\[\frac{2\pi}{5} \cdot \frac{5}{20} = \frac{\pi}{2} \]

\[\frac{2\pi}{5} \cdot \frac{5}{20} = 10\pi \]

\[\frac{2\pi}{5} \cdot \frac{5}{20} = 5 \]

b)

At 7.5 seconds, the height is approximately 30cm

2 out of 3
award full marks
− 1 mark for concept error (incorrect phase shift)

1 out of 1
work consistent with answer in a)
Exemplar 2

a)

2 out of 3
+ 1 mark for amplitude
+ 1 mark for vertical shift
E8 (answer included outside the given domain)

b)

\[15 \cos \left(\frac{3\pi}{5} \times 7.5 \right) + 30 \]

\[15 \cos \left(\frac{15\pi}{5} \right) + 30 \]

\[15 \cos \left(3\pi \right) + 30 \]

1 out of 1
award full marks
E1 (final answer not stated)
Exemplar 3

a)

2 out of 3
+ 1 mark for amplitude
+ 1 mark for vertical shift

b)

\[h(7.5) = 15 \cos \left(\frac{2\pi}{5} \right) (7.5) + 30 \]

1 out of 1
award full marks
E1 (final answer not stated)
Sketch the graph of the function \(f(x) \) and determine the \(y \)-intercept.

\[
f(x) = \frac{4}{(x - 2)(x + 2)}
\]

Solution

1 mark for vertical asymptotes (½ mark for \(x = 2 \), ½ mark for \(x = -2 \))
1 mark for horizontal asymptote at \(y = 0 \)
1½ marks for shape (½ mark for shape in each section)

\(y \)-intercept: \(-1 \) \(\frac{1}{2} \) mark for \(y \)-intercept

4 marks
Exemplar 1

\[y = -1 \]

1½ out of 4

+ 1 mark for vertical asymptotes
+ ½ mark for shape (between vertical asymptotes)
+ ½ mark for y-intercept
− ½ mark for arithmetic error (incorrect points on graph)
2½ out of 4

+ ½ mark for vertical asymptote at \(x = 2 \)
+ 1 mark for horizontal asymptote at \(y = 0 \)
+ ½ mark for shape to the right of asymptote at \(x = 2 \)
+ ½ mark for \(y \)-intercept

\[y = \frac{y}{(0-2)(0+2)} \]
\[y = \frac{y}{(-2)(+2)} \]
\[y = -1 \]

\[y \]
\[1 \quad \frac{1}{3} \quad \frac{1}{12} \]

\[y \text{-intercept: } (0, -1) \]
$x \neq \pm 2$

y-intercept: $y = __________$

3 out of 4

+ 1 mark for vertical asymptotes at $x = \pm 2$
+ 1½ marks for shape
+ ½ mark for y-intercept
E9 (incorrect or missing endpoints or arrowheads)
Kim solved the following logarithmic equation:

\[
\log_2 \left(-\frac{x}{3} \right) = \log_2 (x - 4)
\]

\[
-\frac{x}{3} = x - 4
\]

\[
-x = 3x - 12
\]

\[
-4x = -12
\]

\[
x = 3
\]

Explain why \(x = 3 \) is an extraneous solution.

Solution

\(x = 3 \) is an extraneous solution because the argument in a logarithmic equation cannot be negative.

1 mark
Exemplar 1

\[x = 3 \text{ is an extraneous solution because you cannot take a negative log} \]

½ out of 1
award full marks
- ½ mark for lack of clarity in explanation

Exemplar 2

because when \(x = 3 \) is plugged into the original equation, it doesn't work

½ out of 1
award full marks
- ½ mark for lack of clarity in explanation

Exemplar 3

Because you cannot have a log to zero and in this case
\[\log_2 \left(\frac{3}{2} \right) = \log_2 (0) \]

0 out of 1
Determine the equation of the polynomial function represented by the graph.

Solution

\[
p(x) = a(x - 2)^2(x + 3)
\]

1 mark for x-intercepts (½ mark for each)

\[
24 = a(0 - 2)^2(0 + 3)
\]

1 mark for multiplicity at \(x = 2\)

\[
24 = a(4)(3)
\]

\[
24 = 12a
\]

\[
a = 2
\]

\[
p(x) = 2(x - 2)^2(x + 3)
\]

1 mark for leading coefficient

3 marks
Exemplar 1

\[p(x) = \frac{(x+3)(x-a)^2}{x-2} + ax \]

2 out of 3

+ 1 mark for \(x \)-intercepts
+ 1 mark for multiplicity

Exemplar 2

\[y = (x+3)(x-2) \]

\[y = x^2 - 2x + 3x - 6 \]

\[y = x^2 + x - 6 \]

1 out of 3

+ 1 mark for \(x \)-intercepts
Determine the coterminal angles with $\frac{2\pi}{3}$ over the interval $[-2\pi, 4\pi]$.

Solution

$-\frac{4\pi}{3}, \frac{8\pi}{3}$

1 mark (½ mark for each coterminal angle)
Exemplar 1

\begin{align*}
\left(-240^\circ, 120^\circ, 480^\circ\right)
\end{align*}

1 out of 1

award full marks
E5 (answer stated in degrees instead of radians)

Exemplar 2

\begin{align*}
\frac{2\pi}{3} + 2\pi &= \frac{4\pi}{3} \\
\frac{2\pi}{3} - 2\pi &= -\frac{2\pi}{6}
\end{align*}

½ out of 1

award full marks
- ½ mark for arithmetic error

Exemplar 3

\begin{align*}
\Theta &= \frac{8\pi}{3}, \frac{11\pi}{3}, -\frac{\pi}{3}
\end{align*}

½ out of 1

award full marks
- ½ mark for procedural error (including one incorrect angle)
Question 30

a) Solve the following equation:

\[0 = \sqrt{4x - 8} - 2 \]

b) Explain how your answer in a) is related to the graph of \(y = \sqrt{4x - 8} - 2 \).

Solution

a) \[4 = 4x - 8 \]

\[12 = 4x \]

\[x = 3, \ x \geq 2 \]

b) The answer in a) is the \(x \)-intercept of the graph.

Note(s):

- \(x \geq 2 \) does not need to be shown.
Exemplar 1

a)

\[0 = \sqrt{4x-8} - 2 \]

\[(2)^2 = (\sqrt{4x-8})^2 \]

\[4 = 4x - 8 \]

\[-4 = 4x \]

\[-4 \div 4 = \]

\[1 = x \]

½ out of 1

award full marks
- ½ mark for arithmetic errors in lines 4 and 5

b)

there is an x-intercept at x=1

1 out of 1

work consistent with answer in a)
Exemplar 2

a)

\[0 = \sqrt{4x-8} - 2 \]

\[(2)^2 = (\sqrt{4x-8})^2\]

\[4 = 4x - 8\]

\[\frac{12}{4} = \frac{4x}{4}\]

\[3 = x\]

1 out of 1

b)

It's the same equation just rearranged to equal zero, when graphed this would shift the graph down since -\(\sigma\) is its new base line

0 out of 1
Exemplar 3

a)

0 = √(4x - 8) - 2

2² = 4x - 8
4 = 4x - 8
12 = 4x
x = 3 ✅

4x - 8 ≥ 0
x ≥ 2

1 out of 1

b)

my answer is the solution of the graph: y = √(|4x - 8|) - 2

0 out of 1
Question 31

Determine the exact value of $\sin \frac{13\pi}{12}$.

Solution

$$\sin \frac{13\pi}{12} = \sin \left(\frac{3\pi}{4} + \frac{\pi}{3} \right)$$

$$= \left(\sin \frac{3\pi}{4} \right) \left(\cos \frac{\pi}{3} \right) + \left(\cos \frac{3\pi}{4} \right) \left(\sin \frac{\pi}{3} \right)$$

$$= \left(\frac{\sqrt{2}}{2} \right) \left(\frac{1}{2} \right) + \left(-\frac{\sqrt{2}}{2} \right) \left(\frac{\sqrt{3}}{2} \right)$$

$$= \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}$$

1 mark for combination

2 marks for exact values (½ mark for each)

3 marks

Note(s):

- Other combinations are possible.
Exemplar 1

\[\sin \left(\frac{3\pi}{12} \right) \]
\[\sin \left(\frac{9\pi}{12} + \frac{4\pi}{12} \right) \]
\[\sin \left(\frac{3\pi}{4} + \frac{\pi}{3} \right) \]
\[\sin \left(\frac{3\pi}{4} \right) \cdot \cos \left(\frac{\pi}{3} \right) + \cos \left(\frac{3\pi}{4} \right) \cdot \sin \left(\frac{\pi}{3} \right) \]
\[\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \]
\[\frac{\sqrt{6}}{4} + \frac{\sqrt{3}}{4} \]
\[\frac{\sqrt{6} + \sqrt{3}}{4} \]

1½ out of 3
+ 1 mark for combination
+ ½ mark for an exact value

Exemplar 2

\[\sin \left(\frac{3\pi}{4} \right) \cdot \cos \left(\frac{\pi}{3} \right) + \cos \left(\frac{3\pi}{4} \right) \cdot \sin \left(\frac{\pi}{3} \right) \]
\[= \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} \]
\[\sin \left(\frac{13\pi}{12} \right) = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \]

3 out of 3
award full marks
E7 (notation error in line 3)
Given the functions $f(x) = x + 2$ and $g(x) = \frac{1}{x - 5}$:

a) Determine the equation of the composite function $f(g(x))$ and its domain.

b) Determine the x-intercept and y-intercept of $f(g(x))$.

Solution

a) $f(g(x)) = \frac{1}{x - 5} + 2$

or

$$f(g(x)) = \frac{2x - 9}{x - 5}$$

domain: $\{x \in \mathbb{R}, x \neq 5\}$

1 mark for composition

1 mark for domain

2 marks

b) x-intercept: $\frac{9}{2}$

y-intercept: $\frac{9}{5}$

½ mark for x-intercept

½ mark for y-intercept

1 mark
Exemplar 1

a)

\[y = \frac{(x+2)}{(x-5)} \]

\[f(g(x)) = \frac{(x+2)}{(x-5)} \]

domain: \((-\infty, 5) \cup (5, \infty)\)

1 out of 2

+ 1 mark for domain
E7 (notation error in domain)

b)

x-intercept: \(x = -2 \)

y-intercept: \(y = -\frac{2}{5} \)

\[\frac{2}{5} \]

1 out of 1

work consistent with answer in a)
Exemplar 2

a)

\[
\frac{1}{x-s} + 2 \quad \frac{1}{x-s} + \frac{2x-10}{x-s} \quad \frac{2x-q}{x-s} \quad \frac{x-q}{x-s} \\
\]

\[f(g(x)) = \frac{x-q}{x-s}\]

domain: \((-\infty, \infty)\)

1 out of 2
+ 1 mark for composition
E7 (transcription error in line 4)

b)

x-intercept: 9, 5

y-intercept: \(\frac{9}{5} = 1\frac{4}{5}\)

½ out of 1
+ ½ mark for y-intercept
Exemplar 3

a)

\[f(g(x)) = \frac{1}{x-3} \]

\[\frac{1}{x^2 - 5} \cdot \frac{1}{x-2} \]

domain: \((x \neq 3, x \in \mathbb{R})\)

1 out of 2
+ 1 mark for domain consistent with \(f(g(x))\)

b)

x-intercept: nothing

\(a = \frac{1}{x-3}\)

y-intercept: \(-\frac{1}{3}\)

\(y = \frac{1}{x-3}\)

1 out of 1
work consistent with answer in a)
Question 33

a) Sketch the graph of \(f(x) = \log_5(x - 1) \).

b) Sketch the graph of \(f^{-1}(x) \).

Solution

a)

\[f(x) = \log_5(x - 1) \]

½ mark for vertical asymptote at \(x = 1 \)
½ mark for \(x \)-intercept at \(x = 2 \)
½ mark for increasing logarithmic function
½ mark for consistent point on the logarithmic graph

2 marks

b)

\[f^{-1}(x) \]

1 mark for the graph of the inverse function consistent with a)

1 mark
Exemplar 1

a)

\[
\begin{array}{c|c|c}
 x & y = \log_x y & y = \log_{x-1} y \\
 1 & 0 & 2 \\
 5 & 1 & 6 \\
\end{array}
\]

1½ out of 2

+ ½ mark for \(x\)-intercept at \(x = 2\)
+ ½ mark for increasing logarithmic function
+ ½ mark for consistent point on the graph

b)

\[
\begin{array}{c|c|c}
 x & f(x) & f'(x) \\
 2 & 0 & 2 \\
 6 & 1 & 6 \\
\end{array}
\]

1 out of 1

work consistent with answer in a)
Exemplar 2

a)

2 out of 2
award full marks
E9 (scale values on axes not indicated)

b)

1 out of 1
This page was intentionally left blank.
Explain what the graph of a rational function looks like near a vertical asymptote.

Solution

The graph approaches infinity (positive or negative) as it approaches the asymptote.

or

The graph approaches the asymptote, but does not touch it.
Exemplar 1

To the right of the asymptote, the graph moves toward positive infinity. To the left of the asymptote, the graph moves toward negative infinity. If the rational function \(f(x) \) is negative, the two switch roles.

\[\frac{1}{2} \text{ out of 1} \]

award full marks
- \(\frac{1}{2} \) mark for lack of clarity in explanation

Exemplar 2

It approaches the asymptote but will never touch the point.

\[\frac{1}{2} \text{ out of 1} \]

award full marks
- \(\frac{1}{2} \) mark for terminology error in explanation
Given the graph of \(f(x) = (x - 2)^2 \),

determine one possible restriction for the domain of \(f(x) \) so that its inverse is a function.

Solution

Domain: \([2, \infty)\)

or

Domain: \((\infty, 2)\)

Note(s):

- Other solutions are possible.
Exemplar 1

Domain: \(\forall x \in \mathbb{R} \mid x \neq 0^2 \)

1 out of 1

Exemplar 2

Domain: \(x \neq +2 \)

0 out of 1
Over the interval \([0, 2\pi]\), determine the non-permissible values of \(\theta\) in the expression \(\csc \theta(\cos \theta + 1)\).

Solution

\[
csc \theta = \frac{1}{\sin \theta}
\]

1 mark for correct substitution of an appropriate identity

\[
\sin \theta \neq 0
\]

½ mark for \(\sin \theta \neq 0\)

\[
\theta = 0, \pi, 2\pi
\]

½ mark for consistent non-permissible values

2 marks
Exemplar 1

\[\cos \theta + 1 \neq 0 \]
\[\cos \theta \neq -1 \]
\[\theta = \pi \]

½ out of 2
+ ½ mark for consistent value of \(\theta \)

Exemplar 2

\[\csc \theta = \frac{1}{\cos \theta} \]
\[\cos \theta \neq 0 \]
\[\theta = \frac{\pi}{2}, \frac{3\pi}{2} \]

1 out of 2
+ ½ mark for \(\cos \theta \neq 0 \) consistent with line 1
+ ½ mark for consistent non-permissible values

Exemplar 3

\[\csc \theta = \frac{1}{\sin \theta} \]
\[\sin \theta \neq 0 \]
\[\theta = 0, \pi \]

1½ out of 2
+ 1 mark for correct substitution of an appropriate identity
+ ½ mark for \(\sin \theta \neq 0 \)
Explain why $\binom{3}{8}$ is undefined.

Solution

In the formula $\binom{n}{r}$, the number of objects, n, must be larger than or equal to the number of objects selected, r.

or

You can’t select 8 objects from a total of 3.
Exemplar 1

3 cannot make 8 groups

½ out of 1
award full marks
− ½ mark for terminology error in explanation

Exemplar 2

because the bigger number is supposed to

go first. (: 8 \text{ C}_3 .)

½ out of 1
award full marks
− ½ mark for lack of clarity in explanation

Exemplar 3

because you can’t do the factorial of a

negative number

½ out of 1
award full marks
− ½ mark for lack of clarity in explanation
Question 38

Solve:

\[nP_3 = 48(n-1) \]

Solution

\[
\frac{n!}{(n-3)!} = 48(n-1)
\]

\[
\frac{(n)(n-1)(n-2)(n-3)!}{(n-3)!} = 48(n-1)
\]

\[n(n-2) = 48 \]

\[n^2 - 2n - 48 = 0 \]

\[(n-8)(n+6) = 0 \]

\[n = 8 \quad n = -6 \]

½ mark for substitution in correct formula

1 mark for expansion of factorial

½ mark for simplification of factorials

½ mark for solving for both values of \(n \)

½ mark for rejecting extraneous solution

3 marks
Exemplar 1

\[\frac{n!}{(n-3)!} = 48 \cdot n - 48 \]

\[n \cdot (n-1)(n-2) = 48n - 48 \]

\[n(n^2 - 3n + 2) = 48n - 48 \]

\[n^3 - 3n^2 + 2n - 48n + 48 = 0 \]

\[n^3 - 3n^2 - 48n + 48 = 0 \]

2 out of 3

+ ½ mark for substitution
+ 1 mark for expansion
+ ½ mark for simplification of factorials

Exemplar 2

\[\frac{n!}{n(n-3)!} = 48(n-1) \]

\[\frac{(n)(n-1)(n-2)(n-3)!}{(n-3)!} = 48 \frac{(n-2)}{(n-1)} \]

\[(n)(n-2) = 48 \]

\[n = 8 \]

2 out of 3

+ ½ mark for substitution
+ 1 mark for expansion
+ ½ mark for simplification of factorials

E7 (transcription error in line 1)
E2 (changing an equation to an expression in line 2)
Christine dives off a diving board. Her dive is modelled by the function $h(t) = t^3 - 3t^2 - t + 3$, where h is her height in metres, relative to the water surface and t is the time in seconds after diving off the diving board.

a) Given that $(t + 1)$ is a factor for the function $h(t)$, determine the other factors.

b) Sketch the graph of the function $h(t)$ for the time interval $t = 0$ to $t = 3$.

c) Determine how many seconds Christine is underwater.

Solution

a)

\[
\begin{array}{c|ccc}
-1 & 1 & -3 & -1 & 3 \\
\hline \\
 & -1 & 4 & -3 \\
 & 1 & -4 & 3 & 0 \\
\end{array}
\]

$h(t) = (t + 1)(t^2 - 4t + 3)$

$h(t) = (t + 1)(t - 1)(t - 3)$

½ mark for $t = -1$

1 mark for synthetic division (or equivalent strategy)

½ mark for determining other factors

b)

½ mark for t-intercepts

½ mark for h-intercept

1 mark

c) Christine is underwater for 2 seconds.

1 mark
Exemplar 1

a)

\[
\begin{array}{cccc}
-1 & 1 & -3 & -1 + 3 \\
 4 & -1 & 4 & -3 \\
-1 & -4 & 3 & 0 \\
\end{array}
\]

\((-41\) \\

\[x^2 - 4x + 3 = (x - 3)(x - 1)\] \\

All factors are \((-41)(h-3x^2-1)\)

2 out of 2
award full marks
E3 (variable introduced without being defined)

b)

\[h \times t\]

1 out of 1
award full marks
E8 (answer included outside the given domain)

c)

She was underwater from \(1\) second to \(3\) seconds

1 out of 1
award full marks
E1 (final answer not stated)
Exemplar 2

a) \(h(t) = (t+1)(t-1)(t-3) \).

2 out of 2

b)

\[h \]

\[t \]

\(\frac{1}{2} \) out of 1

+ \(\frac{1}{2} \) mark for \(t \)-intercepts

c) She was under water for 1 second.

1 out of 1
Exemplar 3

a)

\[(t+1)(t-3)(2) \]

Plug in 3 into equation

\[3^2 - 3(t-3) + 3 \]

\[= 9 - 3(t-3) + 3 \]

\[= 0 \]

\[= (t-3) \]

\[(t+1)(t-3) \]

\[t^2 - 3t + 3 \]

\[t^2 - 2t - 3 \]

Factors = \((t+1)(t-1)(t-3) \)

\[t^2 - 2t - 3 = 3t^2 - 2t^2 + 3 \]

\[t^2 - 2t - 3(\text{t} - 1) = 3t^2 - 2t^2 - 3 \]

\[t^2 - 2t - 3 + 2t - 3 = 3t^2 - 2t^2 + 3 \]

\[t^2 - 2t - 3 = t^2 - 2t + 3 \]

2 out of 2

award full marks
E4 (missing brackets but still implied in line 2)
E7 (notation error in line 7)

b)

\[\text{Diagram of function with points (0,3) and (3,0)} \]

1 out of 1

c)

Christine was underwater for 2 seconds

1 out of 1
Prove the identity for all permissible values of x.

$$\sec x + \tan x = \frac{\cos x}{1 - \sin x}$$

Solution

Method 1

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sec x + \tan x$</td>
<td>$\frac{1}{\cos x} + \frac{\sin x}{\cos x}$</td>
</tr>
<tr>
<td>$\frac{1 + \sin x}{\cos x} \cdot \frac{1 - \sin x}{1 - \sin x}$</td>
<td>$\frac{1}{\cos x(1 - \sin x)} \cdot \frac{1 - \sin^2 x}{(1 - \sin x)\cos x}$</td>
</tr>
<tr>
<td>$\frac{1 - \sin^2 x}{(1 - \sin x)\cos x}$</td>
<td>$\frac{\cos^2 x}{(1 - \sin x)\cos x}$</td>
</tr>
<tr>
<td>$\frac{\cos x}{1 - \sin x}$</td>
<td>$\frac{\cos x}{1 - \sin x}$</td>
</tr>
</tbody>
</table>

1 mark for correct substitution of appropriate identities

1 mark for logical process to prove the identity

1 mark for algebraic strategies

3 marks
Method 2

\[\sec x + \tan x = \frac{\cos x}{1 - \sin x} \]

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\cos x}{1 - \sin x})</td>
<td>(\frac{\cos x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)}) 1 mark for logical process to prove the identity</td>
</tr>
<tr>
<td>(\frac{\cos x (1 + \sin x)}{1 - \sin^2 x})</td>
<td>(\frac{\cos x (1 + \sin x)}{\cos^2 x}) 1 mark for correct substitution of appropriate identities</td>
</tr>
<tr>
<td>(\frac{1 + \sin x}{\cos x})</td>
<td>(\frac{1}{\cos x} + \frac{\sin x}{\cos x}) 1 mark for algebraic strategies</td>
</tr>
</tbody>
</table>

3 marks
Exemplar 1

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sec x + \tan x)</td>
<td>(\frac{\cos x}{1 - \sin x})</td>
</tr>
<tr>
<td>(\frac{1}{\cos x} + \frac{\sin x}{\cos x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{1 + \sin x}{\cos x})</td>
<td></td>
</tr>
</tbody>
</table>

1 out of 3

+ 1 mark for correct substitution of appropriate identities

Exemplar 2

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\cos x} + \frac{\cos x}{\sin x})</td>
<td>(\frac{\cos x}{1 - \sin x})</td>
</tr>
<tr>
<td>(\frac{1}{\cos x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\sin x}{\sin x} + \frac{\cos x \cos x}{\sin x \cos x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\sin x + \cos^2 x}{\cos x \sin x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\sin x + \cos^2 x}{\cos x \sin x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\cos x \sin x}{\sin x + \sin^2 x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\cos x \sin x}{\sin x + \sin^2 x + \sin x + 1})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\cos x \sin x}{\cos x \sin x})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\cos x \sin x}{\cos x \sin x})</td>
<td></td>
</tr>
<tr>
<td>(1 - (\sin^2 x - \sin x - 1))</td>
<td></td>
</tr>
<tr>
<td>(\cos x \sin x)</td>
<td></td>
</tr>
</tbody>
</table>

1 out of 3

+ 1 mark for algebraic strategies
Exemplar 3

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(rac{1}{\cos x} + \frac{\sin x}{\cos x})</td>
<td>(\frac{\cos x}{1-\sin x})</td>
</tr>
<tr>
<td>= (\frac{1 + \sin x}{\cos x}) (\frac{\cos x}{\cos x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{1 + \sin x}{\cos^2 x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{\cos x + \sin x}{1 - 2\sin^2 x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{\cos x}{1 - 2\sin x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{\cos x}{1 - \sin x})</td>
<td></td>
</tr>
</tbody>
</table>

1 out of 3

+ 1 mark for logical process to prove the identity

Exemplar 4

<table>
<thead>
<tr>
<th>Left-Hand Side</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sec x + \tan x)</td>
<td>(\frac{\cos x}{1-\sin x}) (\frac{1+\sin x}{1+\sin x})</td>
</tr>
<tr>
<td>= (\frac{1}{\cos x} + \frac{\sin x}{\cos x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{\sin x + 1}{\cos x}) (\frac{\cos x}{\cos x})</td>
<td></td>
</tr>
<tr>
<td>= (\frac{\sin x + \cos x}{\cos^2 x})</td>
<td></td>
</tr>
</tbody>
</table>

2 out of 3

+ 1 mark for correct substitution of appropriate identities
+ 1 mark for logical process to prove the identity
Question 41

Given the graph of \(f(x) \), sketch the graph of the function \(g(x) = -|f(x)| \).

Solution

\(g(x) \)

1 mark for absolute value
1 mark for vertical reflection

2 marks
1 out of 2
+ 1 mark for absolute value
Exemplar 2

1 out of 2
+ 1 mark for absolute value

Exemplar 3

1 out of 2
+ 1 mark for vertical reflection
This page was intentionally left blank.
Given that $\cot \theta = -\frac{2}{5}$, where θ is in Quadrant IV, determine the exact value of $\sin \theta$.

Solution

$P(2, -5)$

$r^2 = (2)^2 + (-5)^2$ \hspace{1cm} \frac{1}{2} \text{ mark for substitution of } x = 2, y = -5

$r^2 = 4 + 25$ \hspace{1cm} \frac{1}{2} \text{ mark for solving for } r

$r = \sqrt{29}$

$\sin \theta = \frac{-5}{\sqrt{29}}$ \hspace{1cm} 1 \text{ mark for } \sin \theta \left(\frac{1}{2} \text{ mark for quadrant, } \frac{1}{2} \text{ mark for value} \right)$
\[
\cot \theta = -\frac{2}{5} = \frac{x}{y}
\]

\[
x^2 + y^2 = r^2 \implies 2^2 + 5^2 = r^2
\]

\[
= 4 + 25 = r^2
\]

\[
= \sqrt{29} = r \implies r = 2\sqrt{6}
\]

\[
\sin \theta = -\frac{5}{2\sqrt{6}}
\]

1½ out of 2

+ ½ mark for substitution of \(x = 2, \ y = 5 \)

+ 1 mark for consistent value of \(\sin \theta \)
MARKING GUIDELINES

Errors that are conceptually related to the learning outcomes associated with the question will result in a 1 mark deduction.

Each time a student makes one of the following errors, a ½ mark deduction will apply.

- arithmetic error
- procedural error
- terminology error in explanation
- lack of clarity in explanation
- incorrect shape of graph (only when marks are not allocated for shape)

Communication Errors

The following errors, which are not conceptually related to the learning outcomes associated with the question, may result in a ½ mark deduction and will be tracked on the Answer/Scoring Sheet.

<table>
<thead>
<tr>
<th>E1 final answer</th>
<th>answer given as a complex fraction</th>
<th>final answer not stated</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2 equation/expression</td>
<td>changing an equation to an expression</td>
<td>equating the two sides when proving an identity</td>
</tr>
<tr>
<td>E3 variables</td>
<td>variable omitted in an equation or identity</td>
<td>variables introduced without being defined</td>
</tr>
<tr>
<td>E4 brackets</td>
<td>“(\sin x^2)” written instead of “(\sin^2 x)”</td>
<td>missing brackets but still implied</td>
</tr>
<tr>
<td>E5 units</td>
<td>missing units of measure</td>
<td>incorrect units of measure</td>
</tr>
<tr>
<td>E6 rounding</td>
<td>answer stated in degrees instead of radians or vice versa</td>
<td></td>
</tr>
<tr>
<td>E7 notation/transcription</td>
<td>notation error</td>
<td>transcription error</td>
</tr>
<tr>
<td>E8 domain/range</td>
<td>answer included outside the given domain</td>
<td>bracket error made when stating domain or range</td>
</tr>
<tr>
<td>E9 graphing</td>
<td>domain or range written in incorrect order</td>
<td>incorrect or missing endpoints or arrowheads</td>
</tr>
<tr>
<td>E10 asymptotes</td>
<td>scale values on axes not indicated</td>
<td>coordinate points labelled incorrectly</td>
</tr>
<tr>
<td>E10 asymptotes</td>
<td>asymptotes drawn as solid lines</td>
<td>asymptotes missing but still implied</td>
</tr>
<tr>
<td>E10 asymptotes</td>
<td>graph crosses or curls away from asymptotes</td>
<td></td>
</tr>
</tbody>
</table>
IRREGULARITIES IN PROVINCIAL TESTS

A GUIDE FOR LOCAL MARKING

During the marking of provincial tests, irregularities are occasionally encountered in test booklets. The following list provides examples of irregularities for which an Irregular Test Booklet Report should be completed and sent to the department:

- completely different penmanship in the same test booklet
- incoherent work with correct answers
- notes from a teacher indicating how he or she has assisted a student during test administration
- student offering that he or she received assistance on a question from a teacher
- student submitting work on unauthorized paper
- evidence of cheating or plagiarism
- disturbing or offensive content
- no responses provided by the student (all “NR”) or only incorrect responses (“0”)

Student comments or responses indicating that the student may be at personal risk of being harmed or of harming others are personal safety issues. This type of student response requires an immediate and appropriate follow-up at the school level. In this case, please ensure the department is made aware that follow-up has taken place by completing an Irregular Test Booklet Report.

Except in the case of cheating or plagiarism where the result is a provincial test mark of 0%, it is the responsibility of the division or the school to determine how they will proceed with irregularities. Once an irregularity has been confirmed, the marker prepares an Irregular Test Booklet Report documenting the situation, the people contacted, and the follow-up. The original copy of this report is to be retained by the local jurisdiction and a copy is to be sent to the department along with the test materials.
Follow-up: __
__
__
__
__
__
Decision: __
__
__
__
__
__
__
Marker’s Signature: __
Principal’s Signature: __

For Department Use Only—After Marking Complete
Consultant: __
Date: __
Table of Questions by Unit and Learning Outcome

Unit A: Transformations of Functions

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>R5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>R3</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>R2, R5</td>
<td>3</td>
</tr>
<tr>
<td>32 a)</td>
<td>R1</td>
<td>2</td>
</tr>
<tr>
<td>32 b)</td>
<td>R1</td>
<td>1</td>
</tr>
<tr>
<td>33 b)</td>
<td>R6</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>R6</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>R1, R5</td>
<td>2</td>
</tr>
</tbody>
</table>

Unit B: Trigonometric Functions

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>T1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>T2</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>T4</td>
<td>1</td>
</tr>
<tr>
<td>25 a)</td>
<td>T4</td>
<td>3</td>
</tr>
<tr>
<td>25 b)</td>
<td>T4</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>T1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>T3</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>T3</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>T2</td>
<td>2</td>
</tr>
</tbody>
</table>

Unit C: Binomial Theorem

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>P3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>P4</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>P4</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>P3</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>P2</td>
<td>3</td>
</tr>
</tbody>
</table>

Unit D: Polynomial Functions

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>R12</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>R12</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>R12</td>
<td>3</td>
</tr>
<tr>
<td>39 a)</td>
<td>R11</td>
<td>2</td>
</tr>
<tr>
<td>39 b)</td>
<td>R12</td>
<td>1</td>
</tr>
<tr>
<td>39 c)</td>
<td>R12</td>
<td>1</td>
</tr>
</tbody>
</table>
Unit E: Trigonometric Equations and Identities

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>T5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>T5</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>T6</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>T6</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>T6</td>
<td>3</td>
</tr>
</tbody>
</table>

Unit F: Exponents and Logarithms

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>R8, R10</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>R10</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>R7</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>R7, R8</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>R10</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>R10</td>
<td>1</td>
</tr>
<tr>
<td>33 a)</td>
<td>R9</td>
<td>2</td>
</tr>
</tbody>
</table>

Unit G: Radicals and Rationals

<table>
<thead>
<tr>
<th>Question</th>
<th>Learning Outcome</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>R14</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>R13</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>R13</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>R14</td>
<td>4</td>
</tr>
<tr>
<td>30 a)</td>
<td>R13</td>
<td>1</td>
</tr>
<tr>
<td>30 b)</td>
<td>R13</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>R14</td>
<td>1</td>
</tr>
</tbody>
</table>