Appendix 12: General and Specific Learning Outcomes

General Learning Outcomes

General learning outcomes (GLOs) provide connections to the Five Foundations for Science Literacy that guide all Manitoba science curricula in all science discipline areas.

Nature of Science and Technology

As a result of their Senior Years science education, students will:

A1 Recognize both the power and limitations of science as a way of answering questions about the world and explaining natural phenomena.

A2 Recognize that scientific knowledge is based on evidence, models, and explanations, and evolves as new evidence appears and new conceptualizations develop.

A3 Distinguish critically between science and technology in terms of their respective contexts, goals, methods, products, and values.

A4 Identify and appreciate contributions made by women and men from many societies and cultural backgrounds that have increased our understanding of the world and brought about technological innovations.

A5 Recognize that science and technology interact with and advance one another.

Science, Technology, Society, and the Environment (STSE)

As a result of their Senior Years science education, students will:

B1 Describe scientific and technological developments—past and present—and appreciate their impact on individuals, societies, and the environment, both locally and globally.

B2 Recognize that scientific and technological endeavours have been and continue to be influenced by human needs and the societal context of the time.

B3 Identify the factors that affect health, and explain the relationships among personal habits, lifestyle choices, and human health, both individual and social.

B4 Demonstrate knowledge of and personal consideration for a range of possible science- and technology-related interests, hobbies, and careers.

B5 Identify and demonstrate actions that promote a sustainable environment, society, and economy, both locally and globally.
Scientific and Technological Skills and Attitudes
As a result of their Senior Years science education, students will:

C1 Recognize safety symbols and practices related to scientific and technological activities and to their daily lives, and apply this knowledge in appropriate situations.

C2 Demonstrate appropriate scientific inquiry skills when seeking answers to questions.

C3 Demonstrate appropriate problem-solving skills when seeking solutions to technological challenges.

C4 Demonstrate appropriate critical thinking and decision-making skills when choosing a course of action based on scientific and technological information.

C5 Demonstrate curiosity, skepticism, creativity, open-mindedness, accuracy, precision, honesty, and persistence, and appreciate their importance as scientific and technological habits of mind.

C6 Employ effective communication skills and use information technology to gather and share scientific and technological ideas and data.

C7 Work cooperatively and value the ideas and contributions of others while carrying out scientific and technological activities.

C8 Evaluate, from a scientific perspective, information and ideas encountered during investigations and in daily life.

Essential Science Knowledge
As a result of their Senior Years science education, students will:

D1 Understand essential life structures and processes pertaining to a wide variety of organisms, including humans.

D2 Understand various biotic and abiotic components of ecosystems, as well as their interaction and interdependence within ecosystems and within the biosphere as a whole.

D3 Understand the properties and structures of matter, as well as various common manifestations and applications of the actions and interactions of matter.

D4 Understand how stability, motion, forces, and energy transfers and transformations play a role in a wide range of natural and constructed contexts.

D5 Understand the composition of the Earth’s atmosphere, hydrosphere, and lithosphere, as well as the processes involved within and among them.

D6 Understand the composition of the universe, the interactions within it, and the implications of humankind’s continued attempts to understand and explore it.
Unifying Concepts

As a result of their Senior Years science education, students will:

E1 Describe and appreciate the similarity and diversity of forms, functions, and patterns within the natural and constructed world.

E2 Describe and appreciate how the natural and constructed world is made up of systems and how interactions take place within and among these systems.

E3 Recognize that characteristics of materials and systems can remain constant or change over time, and describe the conditions and processes involved.

E4 Recognize that energy, whether transmitted or transformed, is the driving force of both movement and change, and is inherent within materials and in the interactions among them.

Cluster 0: Skills and Attitudes

Cluster 0 in Grade 12 Chemistry comprises four categories of specific learning outcomes that describe the skills and attitudes involved in scientific inquiry and the decision-making process for science, technology, society, and the environment (STSE) issues. From Grades 5 to 10, students develop scientific inquiry through the development of a hypothesis/prediction, the identification and treatment of variables, and the formation of conclusions. Students begin to make decisions based on scientific facts and refine their decision-making skills as they progress through the grades, gradually becoming more independent. Students also develop key attitudes, an initial awareness of the nature of science, and other skills related to research, communication, the use of information technology, and cooperative learning.

In Grade 12 Chemistry, students continue to use scientific inquiry as an important process in their science learning, but also recognize that STSE issues require a more sophisticated treatment through the decision-making process.

Teachers should select appropriate contexts to introduce and reinforce scientific inquiry, the decision-making process, and positive attitudes within the thematic topics (Topics 1 to 6) throughout the school year. To assist in planning and to facilitate curricular integration, many specific learning outcomes within the Skills and Attitudes cluster can link to specific learning outcomes in other subject areas.

Demonstrating Understanding

C12-0-U1 Use appropriate strategies and skills to develop an understanding of chemical concepts.

Examples: analogies, concept frames, concept maps, manipulatives, particulate representations, role-plays, simulations, sort-and-predict frames, word cycles . . .

C12-0-U2 Demonstrate an understanding of chemical concepts.

Examples: use accurate scientific vocabulary, explain concepts to others, compare and contrast concepts, apply knowledge to new situations and/or contexts, create analogies, use manipulatives . . .
Scientific Inquiry

C12-0-S1 Demonstrate work habits that ensure personal safety and the safety of others, as well as consideration for the environment.
 Include: knowledge and use of relevant safety precautions, Workplace Hazardous Materials Information System (WHMIS), and emergency equipment

C12-0-S2 State a testable hypothesis or prediction based on background data or on observed events.

C12-0-S3 Design and implement an investigation to answer a specific scientific question.
 Include: materials, independent and dependent variables, controls, methods, and safety considerations

C12-0-S4 Select and use scientific equipment appropriately and safely.
 Examples: volumetric glassware, balance, thermometer . . .

C12-0-S5 Collect, record, organize, and display data using an appropriate format.
 Examples: labelled diagrams, graphs, multimedia applications, software integration, probeware . . .

C12-0-S6 Estimate and measure accurately using Système International (SI) and other standard units.
 Include: SI conversions and significant figures

C12-0-S7 Interpret patterns and trends in data, and infer and explain relationships.

C12-0-S8 Evaluate data and data-collection methods for accuracy and precision.
 Include: discrepancies in data, sources of error, and percent error

C12-0-S9 Draw a conclusion based on the analysis and interpretation of data.
 Include: cause-and-effect relationships, alternative explanations, and supporting or rejecting a hypothesis or prediction

Research

C12-0-R1 Synthesize information obtained from a variety of sources.
 Include: print and electronic sources, specialists, and other resource people

C12-0-R2 Evaluate information obtained to determine its usefulness for information needs.
 Examples: scientific accuracy, reliability, currency, relevance, balance of perspectives, bias . . .

C12-0-R3 Quote from or refer to sources as required and reference information sources according to an accepted practice.

C12-0-R4 Compare diverse perspectives and interpretations in the media and other information sources.

C12-0-R5 Communicate information in a variety of forms appropriate to the audience, purpose, and context.
Communication and Teamwork
C12-0-C1 Collaborate with others to achieve group goals and responsibilities.
C12-0-C2 Elicit, clarify, and respond to questions, ideas, and diverse points of view in discussions.
C12-0-C3 Evaluate individual and group processes.

Nature of Science
C12-0-N1 Explain the roles of theory, evidence, and models in the development of scientific knowledge.
C12-0-N2 Describe, from a historical perspective, how the observations and experimental work of many individuals led to modern understandings of matter.
C12-0-N3 Describe how scientific knowledge changes as new evidence emerges and/or new ideas and interpretations are advanced.

STSE
C12-0-T1 Describe examples of the relationship between chemical principles and applications of chemistry.
C12-0-T2 Explain how scientific research and technology interact in the production and distribution of beneficial materials.
C12-0-T3 Provide examples of how chemical principles are applied in products and processes, in scientific studies, and in daily life.

Attitudes
C12-0-A1 Demonstrate confidence in their ability to carry out investigations in chemistry and to address STSE-related issues.
C12-0-A2 Value skepticism, honesty, accuracy, precision, perseverance, and open-mindedness as scientific and technological habits of mind.
C12-0-A3 Demonstrate a continuing, increasingly informed interest in chemistry and chemistry-related careers and issues.
C12-0-A4 Be sensitive and responsible in maintaining a balance between the needs of humans and a sustainable environment.
Specific Learning Outcomes

The specific learning outcomes (SLOs) identified here constitute the intended learning to be achieved by the student by the end of Grade 12 Chemistry. These statements clearly define what students are expected to achieve and/or be able to perform at the end of course. These SLOs, combined with the Skills and Attitudes SLOs, constitute the source upon which assessment and instructional design are based.

Topic 1: Reactions in Aqueous Solutions (18 hours)

C12-1-01 Explain examples of solubility and precipitation at the particulate and symbolic levels.

C12-1-02 Perform a laboratory activity to develop a set of solubility rules.

C12-1-03 Use a table of solubility rules to predict the formation of a precipitate.

C12-1-04 Write balanced neutralization reactions involving strong acids and bases.

C12-1-05 Perform a laboratory activity to demonstrate the stoichiometry of a neutralization reaction between a strong base and a strong acid.

C12-1-06 Calculate the concentration or volume of an acid or a base from the concentration and volume of an acid or a base required for neutralization.

C12-1-07 Design and test a procedure to determine the identity of a variety of unknown solutions.

C12-1-08 Outline the development of scientific understanding of oxidation and reduction reactions.
Include: gain and loss of electrons, oxidizing agent, and reducing agent

C12-1-09 Determine the oxidation numbers for atoms in compounds and ions.

C12-1-10 Identify reactions as redox or non-redox.
Include: oxidizing agent, reducing agent, oxidized substance, and reduced substance

C12-1-11 Balance oxidation-reduction reactions using redox methods.
Include: acidic and basic solutions

C12-1-12 Research practical applications of redox reactions.
Examples: rocket fuels, fireworks, household bleach, photography, metal recovery from ores, steel making, aluminum recycling, fuel cells, batteries, tarnish removal, fruit clocks, forensic blood detection using luminol, chemiluminescence/bioluminescence, electrolytic cleaning, electrodeposition, photochemical etching, antioxidants/preservatives . . .
Topic 2: Atomic Structure (10 hours)

C12-2-01 Describe qualitatively the electromagnetic spectrum in terms of frequency, wavelength, and energy.

C12-2-02 Recognize, through direct observation, that elements have unique line spectra.
Include: flame tests or gas discharge tubes and spectrosopes or diffraction gratings

C12-2-03 Describe applications and/or natural occurrences of line spectra.
Examples: astronomy, aurora borealis, fireworks, neon lights . . .

C12-2-04 Outline the historical development of the quantum mechanical model of the atom.

C12-2-05 Write electron configurations for elements of the periodic table.
Include: selected elements up to atomic number 36 (krypton)

C12-2-06 Relate the electron configuration of an element to its valence electron(s) and its position on the periodic table.

C12-2-07 Identify and account for periodic trends among the properties of elements, and relate the properties to electron configuration.
Include: atomic radii, ionic radii, ionization energy, and electronegativity

Topic 3: Chemical Kinetics (10 hours)

C12-3-01 Formulate an operational definition of reaction rate.
Include: examples of chemical reactions that occur at different rates

C12-3-02 Identify variables used to monitor reaction rates (i.e., change per unit of time, Δx/Δt).
Examples: pressure, temperature, pH, conductivity, colour . . .

C12-3-03 Perform a laboratory activity to measure the average and instantaneous rates of a chemical reaction.
Include: initial reaction rate

C12-3-04 Relate the rate of formation of a product to the rate of disappearance of a reactant, given experimental rate data and reaction stoichiometry.
Include: descriptive treatment at the particulate level

C12-3-05 Perform a laboratory activity to identify factors that affect the rate of a chemical reaction.
Include: nature of reactants, surface area, concentration, pressure, volume, temperature, and presence of a catalyst

C12-3-06 Use the collision theory to explain the factors that affect the rate of chemical reactions.
Include: activation energy and orientation of molecules
C12-3-07 Draw potential energy diagrams for endothermic and exothermic reactions.
Include: relative rates, effect of a catalyst, and heat of reaction (enthalpy change)

C12-3-08 Describe qualitatively the relationship between factors that affect the rate of chemical reactions and the relative rate of a reaction, using the collision theory.

C12-3-09 Explain the concept of a reaction mechanism.
Include: rate-determining step

C12-3-10 Determine the rate law and order of a chemical reaction from experimental data.
Include: zero-, first-, and second-order reactions and reaction rate versus concentration graphs

Topic 4: Chemical Equilibrium (17 hours)

C12-4-01 Relate the concept of equilibrium to physical and chemical systems.
Include: conditions necessary to achieve equilibrium

C12-4-02 Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems.
Include: mass action expression

C12-4-03 Use the value of the equilibrium constant \(K_{eq} \) to explain how far a system at equilibrium has gone towards completion.

C12-4-04 Solve problems involving equilibrium constants.

C12-4-05 Perform a laboratory activity to determine the equilibrium constant of an equilibrium system.

C12-4-06 Use Le Châtelier’s principle to predict and explain shifts in equilibrium.
Include: temperature changes, pressure/volume changes, changes in reactant/product concentration, the addition of a catalyst, the addition of an inert gas, and the effects of various stresses on the equilibrium constant

C12-4-07 Perform a laboratory activity to demonstrate Le Châtelier’s principle.

C12-4-08 Interpret concentration versus time graphs.
Include: temperature changes, concentration changes, and the addition of a catalyst

C12-4-09 Describe practical applications of Le Châtelier’s principle.
*Examples: Haber process, hemoglobin production at high altitude, carbonated beverages, eyes adjusting to light, blood pH, recharging of batteries, turbocharged/supercharged engines, ester synthesis, weather indicators, arrangement of produce, carbonated beverages in a hen’s diet . . .

C12-4-10 Write solubility product \(K_{sp} \) expressions from balanced chemical equations for salts with low solubility.
C12-4-11 Solve problems involving \(K_{sp} \).
Include: common ion problems

C12-4-12 Describe examples of the practical applications of salts with low solubility.
Examples: kidney stones, limestone caverns, osteoporosis, tooth decay . . .

C12-4-13 Perform a laboratory activity to determine the \(K_{sp} \) of a salt with low solubility.

Topic 5: Acids and Bases (14 hours)

C12-5-01 Outline the historical development of acid-base theories.
Include: the Arrhenius, Brønsted-Lowry, and Lewis theories

C12-5-02 Write balanced acid-base chemical equations.
Include: conjugate acid-base pairs and amphoteric behaviour

C12-5-03 Describe the relationship between the hydronium and hydroxide ion concentrations in water.
Include: the ion product of water, \(K_w \)

C12-5-04 Perform a laboratory activity to formulate an operational definition of \(pH \).

C12-5-05 Describe how an acid-base indicator works in terms of colour shifts and Le Châtelier’s principle.

C12-5-06 Solve problems involving \(pH \).

C12-5-07 Distinguish between strong and weak acids and bases.
Include: electrolytes and non-electrolytes

C12-5-08 Write the equilibrium expression (\(K_a \) or \(K_b \)) from a balanced chemical equation.

C12-5-09 Use \(K_a \) or \(K_b \) to solve problems for \(pH \), percent dissociation, and concentration.

C12-5-10 Perform a laboratory activity to determine the concentration of an unknown acid or base, using a standardized acid or base.

C12-5-11 Predict whether an aqueous solution of a given ionic compound will be acidic, basic, or neutral, given the formula.
Topic 6: Electrochemistry (14 hours)

C12-6-01 Develop an activity series experimentally.

C12-6-02 Predict the spontaneity of reactions using an activity series.

C12-6-03 Outline the historical development of voltaic (galvanic) cells.
 Include: contributions of Luigi Galvani and Alessandro Volta

C12-6-04 Explain the operation of a voltaic (galvanic) cell at the visual, particulate, and symbolic levels.
 Include: writing half-cell reactions, the overall reaction, and shorthand (line) notation

C12-6-05 Construct a functioning voltaic (galvanic) cell and measure its potential.

C12-6-06 Define standard electrode potential.
 Include: hydrogen electrode as a reference

C12-6-07 Calculate standard cell potentials, given standard electrode potentials.

C12-6-08 Predict the spontaneity of reactions using standard electrode potentials.

C12-6-09 Compare and contrast voltaic (galvanic) and electrolytic cells.

C12-6-10 Explain the operation of an electrolytic cell at the visual, particulate, and symbolic levels.
 Include: a molten ionic compound and an aqueous ionic compound

C12-6-11 Describe practical uses of electrolytic cells.
 Examples: electrolysis of water, electrolysis of brine, electroplating, production and purification of metals . . .

C12-6-12 Solve problems related to electrolytic cells, using Faraday’s law.