GRADE 12 INTRODUCTION TO CALCULUS

Manitoba Curriculum Framework of Outcomes

Topic: Limits

Big Ideas:

- Limits can describe function values as the input values approach a number or infinity.Limits are especially useful when the input value is not part of the domain of a function.

Specific Learning Outcomes: <i>It is expected the students will</i>		Achievement Indicators:
IC.1.1	Demonstrate an understanding of the concept of the limit.	 Explore the concept of limits by analyzing a function's graph and table of values. Utilize the definition and proper notation of limits to express a function's limit at a specific point. Verify limit theorems: identity function constant function constant times a function sum/difference of functions product/quotient of functions power of a function Utilize limit theorems to determine the limit of functions by direct substitution.
IC.1.2	Evaluate limits to analyze functions.	 Explain why ⁰/₀ is called an indeterminate form. Solve limits of indeterminate form by algebraic manipulation. Define one-sided limits. Evaluate one-sided limits of functions (including piecewise) graphically and algebraically. Explain the behaviour of limits in the form lim_{x→0} (number/x). Determine limits at infinity. Apply limits to determine the equations of horizontal and vertical asymptotes.
IC.1.3	Apply the concept of limit to the continuity of a function.	Determine graphically whether a function is continuous.Determine algebraically whether a function is continuous.

Topic: Derivatives

Big Ideas:

- The derivative extends the concept of slope to the slope of a curve at a point.
- A derivative function can help someone describe the "shape" of the curve with that derivative.

Specific Learning Outcomes: <i>It is expected the students will</i>		Achievement Indicators:	
IC.2.1	Develop the definition of the derivative as the slope of a curve at a point.	 Note: Prerequisite knowledge includes determining the slope and the equation of a line. Explain how slopes of secant lines can approximate the slope of a tangent line. Define the derivative as the limit of the difference quotient, which is the slope of the tangent line at a point. Describe the derivative function, f'(x), as a function that determines the slope at any point of the function, f(x). Note: Students should be exposed to different notations for derivatives (f', y', and dy/dx). 	
IC.2.2	Develop and apply differentiation rules.	 Develop and apply differentiation rules: a constant times f(x) the power rule with rational exponents sum and difference product quotient chain rule Apply the derivative rules to determine the equation of a tangent line at a point, given a function equation and a point on the function. Define and determine higher-order derivatives of a function. Note: The functions explored in this introductory course do not include trigonometric, exponential, and logarithmic functions. 	
IC.2.3	Demonstrate an understanding of implicit differentiation.	 Determine the derivative of a relation implicitly. Determine the equation of a tangent line to a relation, given a point. Determine higher-order derivatives of a relation using implicit differentiation. 	

Topic: Applications of Derivatives

Big Idea:

• Applying derivatives can help someone solve problems based on many other function models as accurately and efficiently as those with linear or quadratic models.

Specific Learning Outcomes: <i>It is expected the students will</i>		Achievement Indicators:	
IC.3.1	Apply derivatives to solve problems involving the motion of particles.	 Describe the meaning of a displacement function. Determine average and instantaneous velocity given a displacement function. Determine average and instantaneous acceleration given a displacement function. Solve particle motion problems. 	
IC.3.2	Determine features of a function using derivatives to sketch the function accurately.	 Note: Prerequisite skills for this topic include describing domain using interval notation, set notation, and number line graphs. Teachers may want to review solving linear and non-linear inequalities using a sign diagram. Determine the critical values of a function. Determine the intervals where a function is increasing and decreasing. Determine relative extremes and absolute extremes graphically and algebraically. Determine intervals where the graph of a function is concave up and concave down. Determine the points of inflection. Sketch a polynomial function accurately using its characteristics, including intercepts, domain, range, maxima, minima, points of inflection, and concavity. Note: The functions explored in this introductory course do not include trigonometric, exponential, and logarithmic functions. 	
IC.3.3	Apply derivatives to solve optimization and related rates problems.	 Solve optimization problems. Apply the chain rule and implicit differentiation to determine rates of change. Solve problems involving related rates. 	

Topic: Integrals

Big Ideas:

- Integration extends the area of geometric shapes to the area under a function curve where the height of a region is changing.
- Derivatives and integrals are inversely related.

Specific Learning Outcomes: <i>It is expected the students will</i>		Achievement Indicators:	
IC.4.1	Demonstrate an understanding of the relationship between anti- differentiation and integration of functions.	 Describe anti-differentiation as the inverse operation of differentiation. Determine the general antiderivative (family of functions), given the derivative of a function. Define integration in terms of the area bounded by a function curve and the <i>x</i>-axis. Relate anti-differentiation and integration as the fundamental theorem of calculus (first part). Define the indefinite integral. 	
IC.4.2	Apply integration to solve problems.	Determine a specific antiderivative, given the derivative function and the coordinates of a point.Apply integration in a context such as particle motion.	
IC.4.3	Demonstrate and apply an understanding of the definite integral.	 Define the definite integral. Evaluate definite integrals geometrically by calculating area. Evaluate definite integrals using antiderivatives and the fundamental theorem of calculus (second part). Evaluate the definite integral of functions algebraically and geometrically where parts of the function may be below the <i>x</i>-axis. Relate the total area bounded by a function curve, <i>f</i>(<i>x</i>), and the <i>x</i>-axis on interval [<i>a</i>, <i>b</i>] to the definite integral of the absolute value of the function, \$\int_{a}^{b} f(x) dx\$. Determine the area between any two functions on a given interval. Determine the area between two functions where intersecting points determine the interval. 	