Grade 10 Essential Mathematics (20S)

Grade 10 Essential Mathematics (20S) is intended for students whose post-secondary planning does not include a focus on mathematics and science-related fields. Grade 10 Essential Mathematics (20S) is a one-credit course consisting of two half-credits each emphasizing consumer applications, problem solving, decision making, and spatial sense.

Students are expected to work both individually and in small groups on mathematical concepts and skills encountered in everyday life in a technological society.

Assessment of Grade 10 Essential Mathematics should be a balance of assessment for learning, assessment as learning, and assessment of learning. Assessment tools used in

Grade 10 Essential Mathematics should be varied and may include observation, homework, learning conversations or interviews, summative unit essays, demonstrations, presentations, performance tasks, learning logs, projects, investigations, reflective journals, portfolios, quizzes, tests, and examinations. An appropriately prepared portfolio requires a consistent effort throughout the school term and a commitment to completing quality work on a daily basis.

The following table lists the units of study for each half-course, along with an estimated number of hours for each unit. The time for each unit includes instructional and assessment time.

Grade $\mathbf{1 0}$ Essential Mathematics (25S) Half Course I	Grade $\mathbf{1 0}$ Essential Mathematics (25S) Half Course II		
Unit	Suggested Hours	Unit	Suggested Hours
Analysis of Games and Numbers	6	5	
Personal Finance	22	Analysis of Games and Numbers	
Measurement	17	Trigonometry	17
2-D Geometry	10	Consumer Decisions	6
Total	$\mathbf{5 5}$	Transformations	12
Angle Construction	Total	$\mathbf{5 5}$	

General and Specific Learning Outcomes with Achievement Indicators by Course
 Grade 10 Essential Mathematics - Half Course I

	Strand: Analysis of Games and Numbers	General Learning Outcome: Develop critical thinking skills.
	Specific Learning Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.
10E1.A.1.	Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. [C, CN, PS, R] It is intended that this learning outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction, and similar puzzles and games.	- Determine, explain, and verify a strategy to solve a puzzle or to win a game such as - guess and check - look for a pattern - make a systematic list - draw or model - eliminate possibilities - simplify the original problem - work backward - develop alternative approaches - Identify and correct errors in a solution to a puzzle or in a strategy for winning a game. - Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game.

Grade 10 Essential Mathematics - Half Course I

$[$ [C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V}]$	Visualization

Strand:
 Personal Finance

Specific Learning Outcomes
 It is expected that students will:

General Learning Outcome:

Develop an understanding of employment earnings.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.

10E1.P.1. Demonstrate an understanding of calculations for gross pay and net pay earned through income sources, including

- wages
- salary
- contracts
- commissions
- piecework
[C, CN, R, T]

Grade 10 Essential Mathematics - Half Course I

Strand:	
Personal Finance (continued)	General Learning Outcome: Specific Learning Outcomes It is expected that students will:
Develop an understanding of employment earnings.	

Grade 10 Essential Mathematics - Half Course I

$[$ [C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V}]$	Visualization

Strand:
 Measurement

Specific Learning Outcomes
 It is expected that students will:

General Learning Outcome:

Develop spatial sense through direct and indirect measurement.

Achievement Indicators

The following set of indicators may be used to determine whether

10E1.M.1. Demonstrate an understanding of the Système International (SI) by describing relationships of the units for length, area, volume, capacity, and mass.
[C, CN, ME, V]
It is intended that this learning outcome be limited to the base units and the prefixes milli, centi, deci, deca, hecto, and kilo.
students have met the corresponding specific learning outcome.
students have met the corresponding specific learning outcome.

- Explain how the SI system was developed, and explain its relationship to base ten.
- Identify the base units of measurement in the SI system, and determine the relationship among the related units of each type of measurement.
- Identify contexts that involve the SI system.
- Match the prefixes used for SI units of measurement with the powers of ten.
- Explain, using examples, how and why decimals are used in the SI system.
- Provide an approximate measurement in SI units for a measurement given in imperial units.
- Convert one SI unit into another SI unit.
- Explain how the imperial system was developed.
- Identify commonly used units in the imperial system, and determine the relationships among the related units.
- Identify contexts that involve the imperial system.
- Explain, using examples, how and why fractions are used in the imperial system.
- Compare the American and British imperial measurement systems, such as gallons, bushels, or tons.
- Provide an approximate measure in imperial units for a measurement given in SI units.
- Convert one imperial unit into another imperial unit.
- Convert a measurement between imperial and SI units using proportional reasoning

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[V]$	Visualization

Strand:

Measurement (continued)

Specific Learning Outcomes
 It is expected that students will:

General Learning Outcome:

Develop spatial sense through direct and indirect measurement.
Achievement Indicators
The following set of indicators may be used to determine whether
students have met the corresponding specific learning outcome.

- Identify a referent for a common SI or imperial unit of linear measurement.
- Estimate a linear measurement, using a referent.
- Measure inside diameters, outside diameters, lengths, and widths of various given objects using various measuring instruments.
- Measure distances using various measuring instruments.
- Estimate the dimensions of a given regular 3-D object or 2-D shape, using a referent.
- Determine the operations that should be used to solve a linear measurement problem.
- Solve a linear measurement problem including perimeter, circumference, or length + width + height (used in shipping and air travel).
- Provide an example of a situation in which a fractional linear measurement would be divided by a fraction.
- Determine, using a variety of strategies, the midpoint of a linear measurement, such as length, width, height, depth, diagonal, or diameter of a 3-D object, and explain the strategies.
- Explain or verify that a solution to a problem involving linear measurement is reasonable.
- Solve a contextual problem that involves the application of a formula that does not require manipulation.
- Solve a contextual problem that involves the application of a formula that requires manipulation.
- Convert temperatures between Fahrenheit and Celsius.
- Describe, using examples, how a given formula is used in a trade or an occupation.
- Create and solve a contextual problem that involves a formula.
- Identify and correct errors in a solution to a problem that involves a formula.

Grade 10 Essential Mathematics - Half Course I

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V]}$	Visualization

Strand:
 2-D Geometry

Specific Learning Outcomes
 It is expected that students will:

General Learning Outcome:

Develop an understanding of spatial relationships applied to area.
Develop an understanding of spatial relationships applied to area.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.

10E1.G.1. Solve problems that involve SI and imperial area measurements of regular, composite, and irregular 2-D shapes, including decimal and fractional measurements. [ME, PS, R, V]

- Identify and compare referents for area measurements in SI and imperial units.
- Estimate an area measurement, using a referent.
- Identify a situation where a SI or imperial area unit would be used.
- Estimate the area of a given regular, composite, or irregular 2-D shape, using a SI square grid or an imperial square grid.
- Solve a contextual problem that involves the area of a regular, a composite, or an irregular 2-D shape.
- Convert an area measurement expressed in one unit squared into another unit squared using proportional reasoning.
- Solve a problem, using formulas for determining the areas of regular, composite, or irregular 2-D shapes, including circles.
- Explain, using examples, the effect of changing the measurement of one or more dimensions on area and perimeter of rectangles.
- Explain or verify that a solution to a problem involving an area measurement is reasonable.
- Solve a contextual problem that involves the application of a formula that does not require manipulation.
- Solve a contextual problem that involves the application of a formula that does require manipulation.
- Explain or verify that different forms of the same formula are equivalent.
- Describe, using examples, how a given formula is used in a trade or an occupation.
- Create and solve a contextual problem that involves a formula.
- Identify and correct errors in a solution to a problem that involves a formula.

Grade 10 Essential Mathematics - Half Course II

	Strand: Analysis of Games and Numbers	General Learning Outcome: Develop critical thinking skills.
	Specific Learning Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.
10E2.A.1.	Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. [C, CN, PS, R] It is intended that this learning outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction, and similar puzzles and games.	- Determine, explain, and verify a strategy to solve a puzzle or to win a game such as - guess and check - look for a pattern - make a systematic list - draw or model - eliminate possibilities - simplify the original problem - work backward - develop alternative approaches - Identify and correct errors in a solution to a puzzle or in a strategy for winning a game. - Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game.

Grade 10 Essential Mathematics - Half Course II

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V]}$	Visualization

Strand:
 Trigonometry

Specific Learning Outcomes

It is expected that students will:

General Learning Outcome:

Develop spatial sense relating to triangles.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.

- Explain, using illustrations, why the Pythagorean theorem only applies to right triangles.
- Describe historical and contemporary applications of the Pythagorean theorem.
- Determine if a triangle is a right triangle or if an angle is 90° using the Pythagorean theorem.
- Solve a problem using the Pythagorean theorem.

10E2.TG.2. Demonstrate an understanding of primary trigonometric
ratios (sine, cosine, tangent) by

- applying similarity to right triangles
- generalizing patterns from similar right triangles
- solving problems
[CN, PS, R, T, V]
- Explain, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the side adjacent are equal and correspond to the tangent ratio.
- Explain, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the hypotenuse are equal and correspond to the sine ratio.
- Explain, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side adjacent to the length of the hypotenuse are equal and correspond to the cosine ratio.
- Identify situations where the trigonometric ratios are used for indirect measurement of angles and lengths.
- Solve a contextual problem that involves right triangles, using the primary trigonometric ratios.
- Explain or verify that a solution to a problem involving primary trigonometric ratios is reasonable.

Grade 10 Essential Mathematics - Half Course II

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[V]$	Visualization

Strand:
Trigonometry (continued)

Specific Learning Outcomes

It is expected that students will:

General Learning Outcome:

Develop spatial sense relating to triangles.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.

10E2.TG.3. Solve problems that require the manipulation and application of formulas related to

- the Pythagorean theorem
- primary trigonometric ratios
[C, CN, ME, PS, R]
- Solve a contextual problem that involves the application of a formula that does not require manipulation.
- Solve a contextual problem that involves the application of a formula that does require manipulation
- Explain or verify that different forms of the same formula are equivalent.
- Describe, using examples, how a given formula is used in a trade or an occupation.
- Create and solve a contextual problem that involves a formula.
- Identify and correct errors in a solution to a problem that involves a formula.

Grade 10 Essential Mathematics - Half Course II

$[$ [C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V}]$	Visualization

Strand: Consumer Decisions	General Learning Outcome: Develop skills to make informed consumer decisions.
Specific Learning Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.
10E2.C.1. Solve problems that involve unit pricing and currency exchange, using proportional reasoning. [CN, ME, PS, R]	- Determine or compare the unit price of two or more items. - Solve problems that involve determining the best buy, and explain the choice in terms of the cost as well as other factors, such as quality and quantity. - Compare, using examples, different sales promotion techniques - Determine the sale price of an item when given the percent of discount. - Determine the percent increase or decrease of an item. - Solve, using proportional reasoning, a contextual problem that involves currency exchange. - Explain the difference between the selling rate and purchasing rate for currency exchange. - Explain how to estimate the cost of items in Canadian currency while in a foreign country, and explain why this may be important. - Convert between Canadian currency and foreign currencies, using formulas, charts, or tables.

Grade 10 Essential Mathematics - Half Course II

Strand: Transformations	General Learning Outcome: Develop spatial sense.
Specific Learning Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.
10E2.TF.1. Demonstrate an understanding of transformations on a 2-D shape, including - translations - rotations - reflections - dilations [C, CN, R, T, V]	- Identify a single transformation that was performed, given the original 2-D shape and its image. - Draw the image of a 2-D shape that results from a single transformation. - Draw the image of a 2-D shape that results from a combination of successive transformations. - Create, analyze, and describe designs, using translations, rotations, and reflections . - Identify and describe applications of transformations in construction, industrial, commercial, domestic, and artistic contexts. - Explain the relationship between reflections and lines or planes of symmetry. - Determine and explain whether an image is a dilation of another shape, using the concept of similarity. - Draw, with or without technology, a dilation image for a 2-D shape, and explain how the original 2-D shape and its image are proportional. - Solve a contextual problem that involves transformations.

Grade 10 Essential Mathematics - Half Course II

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	$[R]$	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	$[\mathbf{V]}$	Visualization

	Strand: Angle Construction
	Specific Learning Outcomes It is expected that students will:
10E2.AC.1.	Demonstrate an understanding of angles, including acute, right, obtuse, straight, and reflex, by - drawing - replicating and constructing - bisecting - solving problems [C, ME, PS, T, V]

10E2.AC.2. Solve problems that involve parallel, perpendicular, and transversal lines, and pairs of angles formed between them. [C, CN, PS, V]

General Learning Outcome:

Develop spatial sense.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific learning outcome.

- Draw and describe angles with various measures, including acute, right, straight, obtuse, or reflex angles.
- Identify referents for angles.
- Sketch a given angle.
- Estimate the measure of a given angle, using $22.5^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$, and 180° as referent angles.
- Measure, using a protractor, angles in various orientations.
- Explain and illustrate how angles can be replicated in a variety of ways, such as with Mira, protractor, compass and straightedge, carpenter's square, or dynamic geometry software.
- Replicate angles in a variety of ways, with or without technology.
- Bisect an angle, using a variety of methods.
- Identify and describe the use of angles in construction, industrial, commercial, or artistic applications.
- Solve a contextual problem that involves angles.
- Identify a set of lines as perpendicular, parallel, or neither, and explain.
- Illustrate and describe complementary or supplementary angles.
- Identify, in a set of angles, adjacent angles that are not complementary or supplementary.
- Explain and illustrate the relationships of angles formed by parallel lines and a transversal.
- Determine the measures of angles involving parallel lines and a transversal, using angle relationships.
- Explain, using examples, why the angle relationships do not apply when the lines are not parallel.
- Determine if lines or planes are perpendicular or parallel, and describe the strategy used.
- Identify and describe the use of parallel, perpendicular, and transversal lines in construction, industrial, commercial, or artistic applications.
- Solve a contextual problem that involves angles formed by parallel lines and a transversal.

