$$
\begin{gathered}
\text { De veloping Conce ptual } \\
\text { Understanding } \\
\text { of } \\
\mathfrak{N} u m b e r
\end{gathered}
$$

$$
\text { Set } \mathcal{H}:
$$

Coordinate
Geometry

Carole Bilyk
cbilyk@gov.mb.ca

Wayne Watt
wwatt@mts.net

Coordinate Geometry 1

Vocabulary

- x-axis
- coordinate system
- y-axis
- vertical
- x-coordinate
- horizontal
- y-coordinate
- coordinates

Notes

- An x-coordinate represents the distance a point is from the vertical or y-axis.
- The y-coordinate of a point is the distance that point is from the horizontal or x-axis.
- An ordered pair is always expressed as the x-value first and then the y-value. i.e. (x, y)
- For 2b), watch for the misunderstanding that c is larger because it is "higher" than a.
The reason should involve the distance from the y-axis, not the x-axis.

Answers

1. a) $(3,2)$
b) 3 units
c) 2 units
d) Possible Answers

- The distance a point is from the x axis or the horizontal axis.
- How far you travel from the x-axis in the vertical direction to get to the point.
e) 5

2. a) the y-coordinate of the point Q or the distance Q is from the x-axis.
b) c, because it represents the x-coordinate of a point, Q, which is farther away from the y-axis than point P.

Coordinate Geometry 1

1. Use the coordinate system on the right to help answer the following questions:
a) Give the coordinates for point B.
b) How far is B from the

vertical or y-axis?
$\bar{c}) \overline{\mathrm{Ho}} \overline{\mathrm{w}} \overline{\mathrm{f}} \overline{\mathrm{ar}}$ is $\overline{\mathrm{B}}$ from the horizontal or x-axis?
d) If the x-coordinate of a point is defined as the distance from the vertical or y-axis, define y coordinate.
e) What is the value of the y-coordinate for point C?
2. Use the diagram on the right to help answer the questions:
a) What does "d" represent in the diagram?

b) From the diagram which
 is larger: a or c? Why?

Coordinate Geometry 2

Vocabulary

- reflect
- horizontal distance
- vertical distance

Notes

- For 2 b$), \mathrm{G}_{1}$ is a reflection of G and is referred to as "G sub 1"
- For \#3, the horizontal distance between two points can be found:

1. by counting on a sketch or graph
2. as the difference between the x-coordinates.

- For \#3, the vertical distance between two points can be found:

2. by counting on a sketch or graph
3. as the difference between the y-coordinates.

Answers

1. a) $R=(-2,1) ; S=(3,1)$
b) x-coordinate
c) R and S or U and T
d) 3 units
2. a) $F=(-3,-1)$
b) $\mathrm{G}_{1}=(-2,3)$
3. horizontal distance $=4$ units vertical distance $=3$ units

Coordinate Geometry 2

1. Use the coordinate system shown to help answer the following questions:
f) Give the coordinates for both R and S.
g) Which coordinate is the same for S and T?
h) Name 2 points with the same y-coordinates.
i) What is the distance between points R and U ?
2. Consider points F and G as shown.
c) What are the coordinates of F?
d) Reflect G in the y-axis to get a new point, G_{1}. What are the coordinates of G_{1} ?

3. Find the horizontal and vertical distances between $A(6,4)$ and $B(2,7)$

Coordinate Geometry 3

Vocabulary

Notes

- Horizontal points line up horizontally and have the same y-coordinate values.
- Vertical points line up vertically and have the same x-coordinate values.
- For \#1, have a blank Cartesian plane (coordinate grid) available for students to use.

Answers

1. Possible Answers:

- The points $(2,1),(4,1)$, and $(5,1)$ are horizontal.
- These points are horizontal since they are the same distance of 1 unit from the x-axis
- These points all have the same value for their y-coordinates.
- On the graph, the points line up
horizontally.

2. Possible Answers:

- y-coordinate of point B.
- has the same value as b (ie. $\mathrm{d}=\mathrm{b}$)
- $d>f$ since f is negative
- d is positive
- $d>a$ since a is negative
- d is the distance point B is from the x-axis
- ...

Coordinate Geometry 3

1. Give the coordinates for 3 horizontal points. How do you know that your points are horizontal? Explain in two different ways.
2. Points $A(a, b)$ and $B(c, d)$ are horizontal. Points $B(c, d)$ and $C(e, f)$ are vertical.

List 3 things you know about "d".

Coordinate Geometry 4

Vocabulary

- ascending
- rectangle
- length
- width

Answers

1. a) R
b) $(-3,1)$
c) 3 units
d) 5 units
e) P, Q, T, and S
2.

$M=(4,3)$

$Z=(-2,1)$
Length = 6 units (WM)
Width = 2 units (MP)

Coordinate Geometry 4

1. Use the diagram to help answer the following questions:
j) Which point has
coordinates $(2,1)$?
k) What are the coordinates of P ?
I) What is the vertical distance between points Q \& T?
$\mathrm{m})$ What is the horizontal distance between P and T ?
n) Arrange points P, S, T, and Q in ascending order of their x-coordinates.
2. Consider points W and P as shown. Draw a rectangle WMPZ w with opposite sides which are either vertical or horizontal. Find the coordinates for points M and Z. What are the length and width of
 the sides of rectangle WMPZ?

Coordinate Geometry 5

Vocabulary

- vertices
- square

Notes

- For 1b), there are two possible rectangles with $F(2,1)$ and $E(6,1)$:
i) $\quad C(2,5)$ and D(6,5)
ii) $\quad C(2,-3)$ and $D(6,-3)$
- The answers to 1 b) and 1c) should be consistent.
- For \#2, this is an extension of work done in Set C.

Answers

1. a) 4 units

c) Possible Answers:

- $\quad x$-coordinates of C and F are equal (ie. $a=g$)
- $\quad x$-coordinates are both positive (ie. $a>0$ and $g>0$)
- $\quad y$-coordinates are both positive (ie. $b>0$ and $h>0$)
- $\quad b$ is bigger than h
- $\quad b>h$
\bullet

2. Possible Answers:

- 2 hundreds, 5 tens and 7 ones
- 2 hundreds and 57 ones
- 257 ones
- $200+50+7$
- 1 hundred, 15 tens and 7 ones
- 1 hundred, 10 tens and 57 ones
- 25 tens and 7 ones
- ...

Coordinate Geometry 5

1. Consider a square CDEF with vertices at $E(6,1)$ and $F(2,1)$.

a) What is the length of each side of square CDEF?
b) Sketch one possible square CDEF.
c) What can you say for sure about the coordinates of C and F for your square?
2. Numbers can be expressed using place value in several different ways. For example, 23 can be expressed as $20+3,2$ tens and 3 ones, 1 ten and 13 ones, 23 ones, etc.

Using place value, show 5 different ways to express 257.

Coordinate Geometry 6

Vocabulary

- right angled triangle
- isosceles triangle

Notes

- Points on the x-axis have a y-coordinate of 0 . Similarly, points on the y-axis have an x-coordinate of 0 .
- For \#2, have a blank Cartesian plane available for students to use.
- For \#2, it is not possible to order the y-coordinates since you are not sure what order the points are in.

Answers

1. a) T
b) $(3,0)$
c) $\quad P$ and R
d) Possible Answers:

- $\quad \mathrm{P}, \mathrm{R}$ and T
- $\quad Q, S$, and U
- Q, S, and T
- R, S and T
- R, S, and U
e) 4 units

2. Possible Answers:

- The x-coordinate of B is the same as the x-coordinate of A and C. The y-coordinate of B is between the y-coordinates of A and C .

3. Possible Answers:

- $(-7,2)$
- $(8,8)$
- $(-2,-4)$
- $(3,14)$
- $\left(\frac{1}{2}, 5\right)$
- ...

Coordinate Geometry 6

1. Use the diagram to help answer the following questions:
o) Which point has coordinates $(2,-1)$?
p) What are the coordinates of S ?
q) Which 2 points have the same value for their y-coordinates?

r) Which 3 points could be joined to form a right angled triangle?
s) What is the horizontal distance between P and U ?
2. Three points A, B, and C lie on a vertical line. B is between A and C. What can you say for sure about the coordinates of B ?
3. An isosceles triangle has 2 equal sides. Draw an isosceles $\triangle A B C$ where A is at $(3,2)$ and B is at $(-2,8)$. Find coordinates for point C .

Coordinate Geometry 7

Vocabulary

- equilateral triangle

Notes

- $\Delta \mathrm{U}^{\prime} \mathrm{VW}$ is a reflection over side VW of $\Delta \mathrm{UVW}$.
- An equilateral triangle has both equal angles and equal sides.

Answers

1. a)

b) Possible Answers:

- U and U' must have the same x-coordinates.
- If U has a positive y-coordinate, then U' has a negative y-coordinate and vice versa.
...

2. Possible Answers:

- 2 tens, 5 ones, and 7 hundredths
- 1 ten, 15 ones and 7 hundredths
- 25 ones and 7 hundredths
- $20+5+0.07$
- 2507 hundredths
- 2 tens, 50 tenths and 7 hundredths
- 2 tens and 507 hundredths
- 24 ones, 10 tenths, and 7 hundredths
- 24 ones, 9 tenths and 17 hundredths

Coordinate Geometry 7

1. An equilateral triangle has all sides equal in length. Consider equilateral triangles UVW and U'VW with vertices at $\mathrm{V}(1,1)$ and $\mathrm{W}(7,1)$.

a) Sketch 2 possible equilateral triangles UVW and U'VW.
b) From your sketch, what can you say for sure about the coordinates of U and U^{\prime} ?
2. Numbers can be expressed using place value in several different ways. For example, 23 can be expressed as $20+3,2$ tens and 3 ones, 1 ten and 13 ones, 23 ones, etc.
Using place value, show 6 different ways to express 25.07.
