Developing Conceptual Understanding of Number

Set D: Geometry

Carole Bilyk cbilyk@gov.mb.ca Wayne Watt wwatt@mts.net

1. In \triangle PQR side PQ is 6.8 cm long, side PR is 5.0 cm long, and side QR is 7.8 cm long. \bigwedge **P**

- a) Name side PQ of the triangle another way.
- b) What is the shortest side of $\triangle PQR$?
- c) What is the size of the angle opposite the shortest side?
- d) What is the longest side of $\triangle PQR$?
- e) What can you say about the angle opposite the longest side?
- f) What is the sum of the 3 angles in $\triangle PQR$?

- a) Name side DE another way.
- b) What is the size of $\angle F$?
- c) What is the shortest side of $\triangle DEF$?
- d) Arrange the side lengths for $\triangle DEF$ in descending order.
- e) Name angle F another way.

1. Use $\triangle RST$ to answer the questions below:

- a) What is the sum of $\angle 1$ and $\angle 2$?
- b) If $\angle R = 80^{\circ}$ and $\angle S = 70^{\circ}$, find the size of $\angle 1$.
- c) Name the side of $\triangle RST$ that is opposite $\angle 1$. Give your answer in two different ways.
- d) What is the mathematical term for angles with a sum of 180°?
- e) Name $\angle 2$ in two different ways.
- 2. Which angle has a measure of about 75°?

3. Sketch \triangle EFG with \angle E = 90° and \angle F = 40°. Do not use a protractor. Label your sketch.

Vocabulary

- complementary angles
- supplementary angles

Notes

 For #2, as a kinesthetic activity, students could work together to form complementary or supplementary angles with their arms.

Answers

- 1. Possible answers:
 - As long as the three angles add to 180°, a triangle can be formed.
 - 10°, 60°, 110°
 50°, 40°, 90°
 30°, 70°, 80°
 - 10°, 80°, 90°
 30°, 40°, 110°
 50°, 60°, 70°
 - ...
- 2. Possible answers:
 - Complementary angles add to 90° while supplementary angles add to 180°. For example, 30° and 60° are complementary while 30° and 150° are supplementary.

• ...

1. Use the following angles to make 3 triangles. Use each angle only once. Label each triangle. Explain how you know that you can make a triangle with each of your sets of 3 angles.

2. Use examples to show the difference between complementary angles and supplementary angles.

Vocabulary		
 isosceles triangle 		
Notes	Answers	
 For #3, similar questions were introduced in Set C. 	1. a) 40° b) YZ or ZY or x	
	2. a) 30° b) 150° c) MO or <i>n</i> d) ∠ONM or ∠MNO	
	3. a) 50%, <mark>1</mark> , 0.5	
	b) 75%, $\frac{75}{100}$ or $\frac{3}{4}$, 0.75	

- A triangle with two equal angles is isosceles. ∆XYZ is isosceles with the angles shown.
 - a) What is the size of $\angle X$?
 - b) What is the shortest side of ΔXYZ ?

- 2. Use the diagram to help answer the following questions:
 - a) Find the size of $\angle I$.
 - b) Find the size of $\angle 2$.
 - c) Name OM another way.
 - d) Name $\angle 1$ another way.

3. For each diagram, find values for D. Give a percent, an equivalent fraction, and a decimal value for each.

- 1. ΔXYZ is an isosceles triangle with equal angles 1 and 2 shown. Find:
 - a) the size of $\angle X$ if $\angle 2 = 55^{\circ}$.
 - b) the size of $\angle 3$.
 - c) the longest side of $\triangle XYZ$.

- conditions:
 - a) $\triangle DEF$ with $\angle D = 40^{\circ}$ and $\angle F = 60^{\circ}$
 - b) isosceles $\triangle PQR$ with $\angle P = 100^{\circ}$
- 3. Consider the straight line LMN with 3 angles shown at M.
 - a) What is the sum of \angle 's 1, 2, and 3?
 - b) If $\angle 1 = 40^{\circ}$ and $\angle 2 = 90^{\circ}$, what is the size of $\angle 3$?

4. Describe how you can tell which is the shortest side of a triangle. Use an example.

Vocabulary difference 	
Notes • For #3, students should not go to the smallest interval because it is not necessary to know the smallest interval is 12.5%. Students should realize that E is halfway between 75% and 100%.	Answers 1. a) 70° b) ST or TS or r. 2. a) 140° b) No, \triangle MNO is not isosceles since there are not two angles equal. There is a 90°, a 50° and a 40° angle. c) $\angle 1$ and $\angle 2$ 3. a) D: 25%, $\frac{25}{100}$ or $\frac{1}{4}$, 0.25 E: 87.5%; $\frac{87.5}{100}$ or $\frac{7}{8}$, 0.875 b) $\frac{5}{8}$ Possible Answers: • There are 8 spaces in total, and there are 5 spaces between D and E. • $\frac{7}{8} - \frac{2}{8} = \frac{5}{8}$ •

- 1. $\triangle RST$ is isosceles with angles S and T equal. $\angle R = 40^{\circ}$.
 - a) What is the size of $\angle S$?
 - b) What is the shortest side of ΔRST ?

- 2. Use the diagram to help answer the following questions:
 - a) Find the size of $\angle 2$.
 - b) Is ∆MNO an isosceles triangle? Why?
 - c) Name 2 angles that are supplementary.

a) Give percent, fraction, and decimal values for D and E shown in the diagram.

Ν

 b) What is the difference between D and E expressed as a fraction? Show how to find the difference 2 ways.

Geometry 7 1. ΔXYZ is an isosceles triangle with equal angles 1 and 2 shown. Find: d) the size of $\angle 2$ if $\angle X = 56^{\circ}$. e) the size of $\angle 3$. f)the longest side of ΔXYZ .

- 2. Sketch all possible isosceles triangles ABC with $\angle B$ = 50°. Label your triangles.
- 3. Consider the straight line FGH with 4 angles shown at G.
 - c) What is the sum of \angle 's 1, 2, 3, and 4?
 - d) If $\angle 1 = \angle 4$ and $\angle 2$ is the complement of $\angle 3$, what is the size of $\angle 4$?

4. Describe how you can tell which is the longest side of a triangle. Use an example.