Grade 12
Pre-Calculus Mathematics
Achievement Test

Booklet 2

June 2017

Manitoba Education and Training Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test.
Booklet 2. June 2017
This resource is available in print and electronic formats.
ISBN: 978-0-7711-8072-9 (print)
ISBN: 978-0-7711-8073-6 (pdf)

1. Mathematics-Examinations, questions, etc.
2. Educational tests and measurements-Manitoba.
3. Mathematics-Study and teaching (Secondary)-Manitoba.
4. Precalculus-Study and teaching (Secondary)-Manitoba.
5. Mathematical ability-Testing.
I. Manitoba. Manitoba Education and Training.
510.76

Manitoba Education and Training

Winnipeg, Manitoba, Canada
Permission is hereby given to reproduce this resource for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Learning Resource Centre. Order online at www.mtbb.mb.ca.

This resource will also be available on the Manitoba Education and Training website at www.edu.gov.mb.ca/k12/assess/archives/index.html.

Websites are subject to change without notice.

Disponible en français.
While the department is committed to making its publications as accessible as possible, some parts of this document are not fully accessible at this time.

Available in alternate formats upon request.

Instructions

Selected Response Questions

- There are 10 questions worth a total of 11 marks.
- Calculators are not allowed for this part of the test.
- You may use the spaces beside each question for rough work.
- Provide only one answer per question.
- There is no penalty for guessing.
- Record your answers on the sheet provided.

Constructed Response Questions

- There are 22 questions worth a total of 46 marks.
- Calculators are not allowed for this part of the test.
- For full marks, your answer must show all pertinent diagrams, calculations, and explanations.
- Your solutions should be neat, clear, and well organized.
- Write each solution in the space provided.

No marks will be awarded for work done on this page.

If $P(3,5)$ is a point on the graph of $y=f(x)$, identify the corresponding point on the graph of $y=f(x-1)+7$.
a) $(2,12)$
b) $(4,-2)$
c) $(2,-2)$
d) $(4,12)$

Question 19

Identify how the graph of $y=3^{x}$ is transformed to the graph of $y=3^{-x}$.
a) reflected over the x-axis
b) reflected over the y-axis
c) reflected over both the x-axis and the y-axis
d) reflected over the line $y=x$

Question 20
Identify the equation $\log _{a} b=c$ in exponential form.
a) $b^{c}=a$
b) $a^{c}=b$
c) $a^{b}=c$
d) $c^{a}=b$

Identify the graph of $y=\tan x$.
a)

b)

c)

d)

Identify which of the following graphs represents a logarithmic function.
a)

b)

c)

d)

If the volume of a box is represented by $V(x)=(x+4)(x+2)(x-1)$, identify a possible value of x.
a) -4
b) -1
c) 1
d) 4
Question 241 mark

Identify a coterminal angle for $\theta=-\frac{\pi}{3}$.
a) $\frac{\pi}{3}$
b) $\frac{4 \pi}{3}$
c) $\frac{7 \pi}{3}$
d) $\frac{11 \pi}{3}$

Question 25

1 mark

Identify the value of n in the equation ${ }_{n} C_{3}={ }_{n} C_{6}$.
a) 3
b) 6
c) 9
d) 18

Identify the equation of the function, $f(x)$, for the following graph.

a) $f(x)=\frac{2 x}{x+3}$
b) $f(x)=\frac{2}{x+3}$
c) $f(x)=\frac{2 x^{2}}{x(x+3)}$
d) $f(x)=\frac{3 x^{2}}{x(x+2)}$

Match the following radical functions with their graphs.
Place the appropriate letter in this column.

$$
\begin{aligned}
& f(x)=2 \sqrt{-(x+3)} \\
& g(x)=-2 \sqrt{(x+3)} \\
& h(x)=3 \sqrt{(x-2)} \\
& k(x)=\sqrt{3(x-2)}
\end{aligned}
$$

A)

B)

C)

D)

Express $p(x)=x^{3}-2 x^{2}-4 x+8$ as a product of factors.
$p(x)=$

Question 29

a) 3 marks b) 1 mark

Given the graph of $f(x)=(x+3)(x-1)$,

a) sketch the graph of $g(x)=\frac{1}{f(x)}$.

The graph of $f(x)$ has already been drawn for your reference.
No marks will be awarded for the graph of $f(x)$.
b) describe how to sketch the graph of $h(x)=|f(x)|$.

Describe how the value of m in the equation $y=\log _{3}(x-m), m \in \mathbb{R}$, affects the asymptote on the graph of $y=\log _{3} x$.

Solve algebraically.

$$
25^{x}=\left(\frac{1}{5}\right)^{-3 x+1}
$$

Solve $\cos 2 \theta=0$, where $\theta \in \mathbb{R}$.

Describe a difference between the graphs of $y=f(x)$ and $y=g(x)$.

$$
\begin{aligned}
& f(x)=-2(x+1)^{2}(x+3) \\
& g(x)=2(x+1)^{2}(x+3)
\end{aligned}
$$

Given the graph of $y=f(x)$, sketch the graph of $\sqrt{f(x)}$.

The graph of
$f(x)$ has
already been
drawn for your
reference.
No marks will
be awarded for
the graph of
$f(x)$.

Describe the relationship between the zeros of the function $f(x)=(2 x-1)(x+3)^{2}$, the roots of the equation $(2 x-1)(x+3)^{2}=0$, and the x-intercepts of the graph of $y=f(x)$.

Question 36

3 marks
Sketch a graph of at least one period of the function $f(x)=\cos \left[\frac{1}{2}\left(x+\frac{\pi}{2}\right)\right]-3$.

Verify that $\theta=\frac{4 \pi}{3}$ is a solution of the equation $4 \cos ^{2} \theta-1=0$.

Describe how to determine the equation of the horizontal asymptote of a rational function when the degree of the polynomial in the numerator and the degree of the polynomial in the denominator are equal.

Evaluate.

$$
\frac{\cot \left(-\frac{5 \pi}{6}\right)}{\sin \left(\frac{17 \pi}{3}\right)}
$$

Sketch the graph of the function $f(x)=\frac{-1}{(x-1)^{2}}$ and determine the range.

Range: \qquad

Given $f(x)=\sqrt{x-2}$ and $g(x)=x^{2}+1$,
a) determine $g(f(x))$.
$g(f(x))=$ \qquad
b) explain why the domain of $g(f(x))$ is restricted.

Solve algebraically.

$$
2 \log _{a} 3+\log _{a} 4=2, \text { where } a>0
$$

Solve $\sec \theta+2=0$ over the interval $[0,2 \pi]$.

Determine the x-intercept of the graph of $f(x)=e^{x}-1$.

Given the $5^{\text {th }}$ row of Pascal's triangle, determine the values of the next row.
$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$

Evaluate.

$$
\log _{2} 80-\log _{2} 10
$$

State the amplitude of $f(x)=-2 \sin (x-\pi)-1$.

Determine the exact value of $\cos 15^{\circ}$.

Given $f(x)=x^{2}+5 x+6, g(x)=x+3$, and $h(x)=f(x)-g(x)$,
a) determine $h(x)$.
$h(x)=$ \qquad
b) sketch the graph of $y=h(x)$.

No marks will be awarded for work done on this page.

