

Booklet 2

January 2018

Manitoba Education and Training Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test.

Booklet 2. January 2018

This resource is available in print and electronic formats.

ISBN: 978-0-7711-7669-2 (print) ISBN: 978-0-7711-7670-8 (pdf)

- 1. Mathematics—Examinations, questions, etc.
- 2. Educational tests and measurements—Manitoba.
- ${\it 3. Mathematics-Study and teaching (Secondary)-Manitoba.}\\$
- 4. Pre-calculus—Study and teaching (Secondary)—Manitoba.
- 5. Mathematical ability—Testing.

 I. Manitoba. Manitoba Education and Training.

510.76

Copyright © 2018, the Government of Manitoba, represented by the Minister of Education and Training.

Manitoba Education and Training Winnipeg, Manitoba, Canada

Permission is hereby given to reproduce this resource for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Learning Resource Centre. Order online at www.manitobalrc.ca.

This resource will also be available on the Manitoba Education and Training website at www.edu.gov.mb.ca/k12/assess/archives/ index.html.

Websites are subject to change without notice.

Disponible en français.

While the department is committed to making its publications as accessible as possible, some parts of this document are not fully accessible at this time.

Available in alternate formats upon request.

Grade 12 Pre-Calculus Mathematics Achievement Test

DESCRIPTION

Time: 3 hours

Numbers and Marks by Question Type

	Selected Response	Constructed Response	Marks		
Booklet 1*	_	15	32		
Booklet 2	9	25	57		
Total	9	40	89		

^{*} The first 5 questions in *Booklet 1* require a calculator. You will have access to your calculator for the first 45 minutes of the test.

Note that diagrams and graphs provided in the test booklets may not be drawn to scale.

DIRECTIONS

Selected Response Questions

- Calculators are **not** allowed for this part of the test.
- You may use the spaces beside each question for rough work.
- Provide only one answer per question.
- There is no penalty for guessing.
- Record your answers on the sheet provided.

Constructed Response Questions

- Calculators are **not** allowed for this part of the test.
- For full marks, your answer must show all pertinent diagrams, calculations, and explanations.
- Your solutions should be neat, clear, and well organized.
- Write each solution in the space provided.

Electronic communication between students through phones, email, or file sharing during the test is strictly prohibited.

No marks will be awarded for work done on this page.

Identify 10° in radians.

- a) $\frac{1800}{\pi}$
- b) $\frac{\pi}{1800}$
- c) $\frac{18}{\pi}$
- d) $\frac{\pi}{18}$

Question 17 1 mark

The polynomial function, $P(x) = a(x-1)^2(x+4)^2$, has a y-intercept of -8.

Identify the value of a.

- a) -2
- b) $-\frac{1}{2}$
- c) $\frac{1}{2}$
- d) 2

Identify the value of $\log_4\left(\frac{1}{16}\right)$.

- a) -2
- b) $-\frac{1}{2}$
- c) $\frac{1}{2}$
- d) 2

Question 19 1 mark

Given the angle $\frac{25\pi}{7}$, identify the coterminal angle on the interval $[-2\pi, 0]$.

- a) $\frac{18\pi}{7}$
- b) $\frac{11\pi}{7}$
- c) $-\frac{3\pi}{7}$
- $d) \frac{10\pi}{7}$

Question 20 1 mark

Identify which expression cannot be evaluated.

- a) $_{7}P_{0}$
- b) $_{7}P_{6}$
- c) $_{7}P_{7}$
- d) $_{7}P_{8}$

Question 21 1 mark

Identify the graph of $f(x) = \frac{-3x}{2x+4}$.

Question 22 1 mark

Given a point (-2,0) on the graph of y = f(x), identify the coordinates of the corresponding point on the graph of $y = 4f\left(\frac{1}{2}x\right)$.

- a) (-8,0)
- b) (-4,0)
- c) (-2,0)
- d) (-1,0)

Question 23 1 mark

Identify the non-permissible value of θ for the expression $\frac{\cos \theta}{1 + \sin \theta}$.

- a) $\frac{\pi}{2}$
- b) π
- c) $\frac{3\pi}{2}$
- d) 2π

Question 24 1 mark

Identify the function with an asymptote at x = -3.

- a) $y = \log(x+3)$
- $b) y = \log x + 3$
- c) $y = \log(x-3)$
- $d) y = \log x 3$

Evaluate the following expression.

$$\tan\left(\frac{2\pi}{3}\right)\csc\left(\frac{-2\pi}{3}\right) + \cos\left(3\pi\right)$$

Question 26 1 mark 118

State the range of the graph below.

Range:	

Question 27 2 marks 119

Sketch the graph of the function $f(x) = \frac{2x^2 - 5x}{x}$.

Question 28 1 mark 120

State a possible value of *n* if the polynomial function $P(x) = (x-1)^2 (x+2)^n$ has a range of $[0,\infty)$.

Sketch the graph of $y = \left(\frac{1}{2}\right)^{x-1}$.

Question 30 1 mark 122

Solve.

$$\log_x 27 = 3$$

Question 31 2 marks 123

Sketch at least two periods of the graph $y = \tan x$.

Question 32 1 mark 124

Given the graph of f(x), determine the domain of $\frac{1}{f(x)}$.

Domain:

Question 33 3 marks 125

Determine the values of A, B, and D of the sinusoidal function in the form $y = A \sin(Bx) + D$.

Question 34

Determine if the point $\left(-\frac{\sqrt{7}}{5}, \frac{2}{5}\right)$ is on the unit circle.

Justify your answer.

1 mark 126

Solve, algebraically.

$$\frac{{}_{n}C_{5}}{{}_{n}C_{4}} = 6$$

Given $\sin \alpha = \frac{4}{5}$, where α is in quadrant II, determine the exact value of $\sin 2\alpha$.

Given the functions f(x) = x + 1 and $g(x) = \sqrt{x}$,

a) determine the equation of g(f(x)).

$$g(f(x)) = \underline{\hspace{1cm}}$$

b) sketch the graph of g(f(x)).

Question 38 1 mark 131

Steve is asked to determine an equation with a larger period than the period of the graph of $y = \cos(2x)$.

Justify why Steve's answer of $y = \cos(6x)$ is incorrect.

Given the graphs of f(x) and g(x),

a) determine the value of $(f \cdot g)(-1)$.

b) determine the value of g(f(0)).

Question 40 3 marks 134

Sketch the graph of $P(x) = -(x-1)^3 (x-3)(x+1)$.

The point $\left(-\sqrt{3},1\right)$ is on the terminal arm of an angle θ , in standard position.

a) Determine $\tan \theta$.

b) Determine a possible value of θ , in radians.

Question 42 1 mark 137

Describe the transformation used to obtain the graph of $y = \log_5 x$ given the graph of $y = 5^x$.

Question 43 2 marks 138

Solve
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
, where $\theta \in \mathbb{R}$.

Question 44 139

Given that the point (a,b) is on the graph of f(x), describe how you would determine the corresponding point on the graph of $y = \sqrt{f(x)}$.

Question 45 1 mark 140

Evaluate.

$$\cos\left(\frac{\pi}{20}\right)\cos\left(\frac{\pi}{5}\right) - \sin\left(\frac{\pi}{20}\right)\sin\left(\frac{\pi}{5}\right)$$

Question 46 3 marks 147

Describe the transformations used to obtain the graph of the function y = f(-x+6)-8 from the graph of y = f(x).

Question 47 2 marks 142

State the equations of all the asymptotes of the function, $y = \frac{1}{3x+1}$.

Determine the zeros of the polynomial function $P(x) = 2x^3 + 5x^2 - 4x - 3$.

Determine the equation of the radical function represented by the graph.

ν	=						

No marks will be awarded for work done on this page.

