Grade 12
Pre-Calculus Mathematics
Achievement Test

Booklet 2

Manitoba Education and Advanced Learning Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test.
Booklet 2. January 2015 [electronic resource]
ISBN: 978-0-7711-5845-2

1. Mathematics-Examinations, questions, etc.
2. Educational tests and measurements-Manitoba.
3. Mathematics-Study and teaching (Secondary)-Manitoba.
4. Precalculus-Study and teaching (Secondary)-Manitoba.
5. Mathematical ability-Testing.
I. Manitoba. Manitoba Education and Advanced Learning.
510.76

Manitoba Education and Advanced Learning

School Programs Division
Winnipeg, Manitoba, Canada
Permission is hereby given to reproduce this document for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Text Book Bureau. Order online at <www.mtbb.mb.ca>.

This resource will also be available on the Manitoba Education and Advanced Learning website at <www.edu.gov.mb.ca/k12/assess/archives/index.html>.

Websites are subject to change without notice.

Disponible en français.

Available in alternate formats upon request.

Instructions

Multiple-Choice Questions

- There are 10 questions each worth one mark.
- Calculators are not allowed for this part of the test.
- You may use the spaces beside each question for rough work.
- Provide only one answer per question.
- There is no penalty for guessing.
- Record your answers on the sheet provided.

Constructed Response Questions

- There are 20 questions worth a total of 47 marks.
- Calculators are not allowed for this part of the test.
- For full marks, your answer must show all pertinent diagrams, calculations, and explanations.
- Your solutions should be neat, clear, and well organized.
- Write each solution in the space provided.

No marks will be awarded for work done on this page.

Question 16

How many terms are there in the expansion of $\left(x^{12}+3\right)^{10}$?
a) 9
b) 10
c) 11
d) 12

Question 17

A co-terminal angle for $\theta=\frac{11 \pi}{3}$ in the domain $-2 \pi \leq \theta \leq 0$ would be:
a) $-\frac{5 \pi}{3}$
b) $-\frac{\pi}{3}$
c) $\frac{\pi}{3}$
d) $\frac{5 \pi}{3}$

Question 18

The x-intercept of the graph of $y=3^{x}-1$ is:
a) -1
b) 0
c) 1
d) 2

If ${ }_{n} C_{5}={ }_{n} C_{3}$, the value of n must be:
a) 3
b) 5
c) 8
d) 15

Question 20

What is the domain of the function $f(x)=\sqrt{-(x+1)}$?
a) $\{x \mid x \in \mathbb{R}, x \neq-1\}$
b) $\{x \mid x \in \mathbb{R}, x \geq-1\}$
c) $\{x \mid x \in \mathbb{R}, x \leq-1\}$
d) $\{x \mid x \in \mathbb{R}\}$

Question 21

Identify a non-permissible value of x for the expression $\frac{1}{\cos 2 x}$.
a) 0
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) π

The expression $2 \log x-\frac{1}{3} \log y$ as a single logarithm is:
a) $\log \frac{x^{2}}{\sqrt[3]{y}}$
b) $\log \frac{2 x}{3 y}$
c) $-\log x^{2} \sqrt[3]{y}$
d) $\log \left(x^{2}-\sqrt[3]{y}\right)$

The point $\mathrm{P}(\theta)$ lies on the unit circle. What are the coordinates of the point if $\theta=300^{\circ}$?
a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
b) $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
c) $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
d) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

What is the degree of the polynomial function represented by the graph below?
a) 2
b) 3
c) 4
d) 5

When the point $(-4,-3)$ is reflected in the line $y=x$, the coordinates of the new point are:
a) $(-3,-4)$
b) $(3,4)$
c) $(4,-3)$
d) $(-4,3)$
a) Sketch the graph of $y=\left(\frac{1}{4}\right)^{x}$.

b) Sketch the graph of $y=2\left(\frac{1}{4}\right)^{x}$.

Determine all of the zeroes of the function $p(x)=x^{3}-5 x^{2}-2 x+24$, given one of the factors of $p(x)$ is $(x-3)$.

Given the graph of $f(x)$,

sketch the graph of $y=\sqrt{f(x)}$.

The graph of $f(x)$ has already been drawn for your reference.
No marks will be awarded for the graph of $f(x)$.

Sketch the graph of at least one period of the function $y=-2 \sin (4 x)$.

Evaluate:

$$
\frac{1}{2} \log _{3} 144-\log _{3} 4+2 \log _{3} 3
$$

Match each function with its correct description.
a) The graph of this function has a vertical asymptote at $x=-1$.
b) The graph of this function has a point of discontinuity (hole) at $x=3$.
c) The graph of this function has a horizontal asymptote at $y=4$.
d) The domain of this function is $x \in \mathbb{R}$.

Place the appropriate letter in this column.
$f(x)=\frac{4}{x^{2}+1}$ \qquad
$g(x)=\frac{4 x}{x+3}$
$h(x)=\frac{4(x-3)(x+2)}{(x-3)}$
$k(x)=\frac{4(x-3)}{(x+3)(x+1)}$

The point $(-3,4)$ is on the graph of $y=\frac{1}{2} f(3 x)$.
State the coordinates of the corresponding point on the graph of $y=f(x)$.

Sketch the graph of $y=-2(x-1)(x-3)(x+1)$.

Question 34

a) 2 marks b) 1 mark
a) Verify that the equation $\frac{1-\sin ^{2} x}{\cos x}=\frac{\sin 2 x}{2 \sin x}$ is true for $x=\frac{\pi}{3}$.

b) Explain why verifying the equation for $x=\frac{\pi}{3}$ is insufficient to conclude that the equation is an identity.

Evaluate:

$$
\frac{{ }_{7} P_{2}}{{ }_{7} P_{5}}
$$

Use the graph of $y=f(x)$ to sketch the graph of $y=f(3 x)+1$.

The graph of
$f(x)$ has
already been
drawn for your
reference.
No marks will
be awarded for
the graph of
$f(x)$.

Solve the following equation:

$$
\log _{4}(x+2)+\log _{4} 3=\log _{4} x
$$

Determine the coordinates of the point of discontinuity (hole) for the graph of the function

$$
y=\frac{(2-x)(x-3)}{(x-2)}
$$

Evaluate and simplify $\sec \left(\frac{5 \pi}{6}\right) \cdot \tan \left(-\frac{\pi}{6}\right)$.

Sketch the graph of the following function:

$$
y=-2 \sqrt{x-3}
$$

Sketch the graph of $f(x)=\frac{2 x+3}{x+2}$.

Question 42
a) 2 marks
b) 1 mark
138
139
a) Given the functions $f(x)=\sqrt{4+x}$ and $g(x)=|3 x-6|$, evaluate $f(g(-5))$.
b) Is it possible to evaluate $g(f(-5))$?

Justify your answer.

Identify which of these values is greater. Justify your answer.

$$
\log _{5} 80 \text { or } \log _{3} 30
$$

Given $\cos \alpha=\frac{3}{5}$, where α is in quadrant IV, and $\cos \beta=-\frac{2}{3}$, where β is in quadrant II, determine the exact value of $\sin (\alpha-\beta)$.

Determine the number of possible sandwiches from the following menu.

MENU

Select one item from each column:			
$\underline{\text { Bread }}$ $\underline{\text { Sauce }}$ $\underline{\text { Meat }}$	$\underline{\text { Vegetable }}$		
White Rye	Mayo Brown	Turkey	Tomato Onion
		Ham Roast Beef Chicken	Lettuce

No marks will be awarded for work done on this page.

No marks will be awarded for work done on this page.

