Grade 12

Pre-Calculus Mathematics
Achievement Test

Marking Guide

June 2013

Manitoba Education Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test.
Marking guide. June 2013 [electronic resource]
ISBN: 978-0-7711-5424-9

1. Mathematics-Examinations, questions, etc.
2. Educational tests and measurements-Manitoba.
3. Mathematics-Study and teaching (Secondary)-Manitoba.
4. Calculus-Study and teaching (Secondary)-Manitoba.
5. Mathematical ability-Testing.
I. Manitoba. Manitoba Education.
515.76

Manitoba Education
School Programs Division
Winnipeg, Manitoba, Canada
Permission is hereby given to reproduce this document for non-profit educational purposes provided the source is cited.

[^0]Websites are subject to change without notice.

Disponible en français.

Available in alternate formats upon request.

Table of Contents

General Marking Instructions 1

Scoring Guidelines 5
Booklet 1 Questions 7
Booklet 2 Questions 25
Answer Key for Multiple-Choice Questions 26
Appendices 51
Appendix A: Marking Guidelines 53
Appendix B: Irregularities in Provincial Tests 55
Irregular Test Booklet Report 57
Appendix C: Table of Questions by Unit and Learning Outcome 59

General Marking Instructions

Please make no marks in the student test booklets. If the booklets have marks in them, the marks need to be removed by departmental staff prior to sample marking should the booklet be selected.

Please ensure that

- the booklet number and the number on the Answer/Scoring Sheet are identical
- students and markers use only a pencil to complete the Answer/Scoring Sheets
- the totals of each of the four parts are written at the bottom
- each student's final result is recorded, by booklet number, on the corresponding Answer/Scoring Sheet
- the Answer/Scoring Sheet is complete
- a photocopy has been made for school records

Once marking is completed, please forward the Answer/Scoring Sheets to Manitoba Education in the envelope provided (for more information see the administration manual).

Marking the Test Questions

The test is composed of short-answer questions, long-answer questions, and multiplechoice questions. Short-answer questions are worth 1 or 2 marks each, long-answer questions are worth 3 to 5 marks each, and multiple-choice questions are worth 1 mark each. An answer key for the multiple-choice questions can be found at the beginning of the section "Booklet 2 Questions."

Each question is designed to elicit a well-defined response according to the associated specific learning outcome(s) and relevant mathematical processes. Their purpose is to determine whether a student meets the standards for the course as they relate to the knowledge and skills associated with the question.

To receive full marks, a student's response must be complete and correct. Where alternative answering methods are possible, the Marking Guide attempts to address the most common solutions. For general guidelines regarding the scoring of students' responses, see Appendix A.

Irregularities in Provincial Tests

During the administration of provincial tests, supervising teachers may encounter irregularities. Markers may also encounter irregularities during local marking sessions. Appendix B provides examples of such irregularities as well as procedures to follow to report irregularities.

If an Answer/Scoring Sheet is marked with "0" and/or "NR" only (e.g., student was present but did not attempt any questions) please document this on the Irregular Test Booklet Report.

Assistance

If, during marking, any marking issue arises that cannot be resolved locally, please call Manitoba Education at the earliest opportunity to advise us of the situation and seek assistance if necessary.

You must contact the Assessment Consultant responsible for this project before making any modifications to the answer keys or scoring rubrics.

Allison Potter
Assessment Consultant
Grade 12 Pre-Calculus Mathematics
Telephone: 204-945-7590
Toll-Free: 1-800-282-8069, extension 7590
Email: allison.potter@gov.mb.ca

Communication Errors

The marks allocated to questions are primarily based on the concepts and procedures associated with the learning outcomes in the curriculum. For each question, shade in the circle on the Answer/Scoring Sheet that represents the marks given based on the concepts and procedures. A total of these marks will provide the preliminary mark.

Errors that are not related to concepts or procedures are called "Communication Errors" (see Appendix A) and will be tracked on the Answer/Scoring Sheet in a separate section. There is a $1 / 2$ mark deduction for each type of communication error committed, regardless of the number of errors per type (i.e. committing a second error for any type will not further affect a student's mark), with a maximum deduction of 5 marks from the total test mark.

The total mark deduction for communication errors for any student response is not to exceed the marks given for that response. When multiple communication errors are made in a given response, any deductions are to be indicated in the order in which the errors occur in the response, without exceeding the given marks.

The student's final mark is determined by subtracting the communication errors from the preliminary mark.

Example: A student has a preliminary mark of 72. The student committed two E1 errors ($1 / 2$ mark deduction), four E7 errors ($1 / 2$ mark deduction), and one E8 error ($1 / 2$ mark deduction). Although seven communication errors were committed in total, there is a deduction of only $11 / 2$ marks.

Mark assigned to the student / Note accordée à l'élève

Scoring Guidelines

Booklet 1 Questions

A central angle of a circle subtends an arc length of $5 \pi \mathrm{~cm}$.
Given the circle has a radius of 9 cm , find the measure of the central angle in degrees.

Solution

$$
\begin{array}{rlrl}
s & =\theta r & & \\
5 \pi & =\theta(9) & & 1 / 2 \text { mark for substitution into correct formula } \\
\theta & =\frac{5 \pi}{9} & & 1 / 2 \text { mark for solving for } \theta \\
\theta \text { (in degrees }) & =\frac{5 \pi}{9} \cdot \frac{180^{\circ}}{\pi} & & \\
& =100^{\circ} & & 1 \text { mark for conversion to degrees } \\
& & \mathbf{2} \text { marks }
\end{array}
$$

Solve the equation $\csc ^{2} \theta+3 \csc \theta-4=0$ over the interval $[0,2 \pi]$. Express your answers as exact values or correct to 3 decimal places.

Solution

Method 1

$$
\begin{aligned}
& \csc ^{2} \theta+3 \csc \theta-4=0 \\
& (\csc \theta-1)(\csc \theta+4)=0 \\
& \begin{array}{lll}
\csc \theta=1 & \csc \theta=-4 & 1 \text { mark for solving for } \csc \theta \\
\sin \theta=1 & \sin \theta=-\frac{1}{4} & 1 \text { mark for reciprocal of } \csc \theta
\end{array} \\
& \theta=\frac{\pi}{2} \quad \theta_{r}=0.252680 \\
& \text { or } \\
& \theta=1.570796 \quad \theta=3.394273,6.030505 \\
& \theta=\frac{\pi}{2}, 3.394,6.031 \\
& \text { or } \\
& \theta=1.571,3.394,6.031
\end{aligned}
$$

Method 2-Graphing Calculator

$y=\left(\frac{1}{\sin \theta}\right)^{2}+\frac{3}{\sin \theta}-4$
1 mark for equation

1 mark for justification

Find all zeros from $[0,2 \pi]$.
$\theta=1.571,3.394,6.031$

1 mark for restricted domain

1 mark for solutions

Jess invests $\$ 12000$ at a rate of 4.75% compounded monthly.
How long will it take for Jess to triple her investment?
Express your answer in years, correct to 3 decimal places.

Solution

Method 1

$$
\begin{array}{rlrl}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
36000 & =12000\left(1+\frac{0.0475}{12}\right)^{12 t} & & 1 / 2 \text { mark for substitution } \\
3 & =\left(1+\frac{0.0475}{12}\right)^{12 t} & \\
\ln 3 & =\ln \left(1+\frac{0.0475}{12}\right)^{12 t} & & 1 / 2 \text { mark for applying logarithms } \\
\ln 3 & =12 t \ln \left(1+\frac{0.0475}{12}\right) & & 1 \text { mark for power rule } \\
t & =\frac{112 \text { mark for isolating } t}{12 \ln \left(1+\frac{0.0475}{12}\right)} & & \\
t & =23.174425 & 1 / 2 \text { mark for evaluating quotient of logarithms } \\
t & =23.174 \text { years } & & \mathbf{3} \text { marks }
\end{array}
$$

Note(s):

- award a maximum of 2 marks for the formula $A=P e^{r t}$ used correctly

Method 2-Graphing Calculator
$y=3$
$y=\left(1+\frac{0.0475}{12}\right)^{12 t}$
1 mark for equations

or
Find the value of t at the point of intersection of these two functions.
$t=23.174$ years

1 mark for justification

The 4th term in the binomial expansion of $\left(q x^{2}-\frac{3}{x}\right)^{10}$ is $414720 x^{11}$.
Determine the value of q algebraically.

Solution

$$
\begin{aligned}
t_{4} & ={ }_{10} C_{3}\left(q x^{2}\right)^{7}\left(-\frac{3}{x}\right)^{3} & & 2 \text { marks (1 mark for }{ }_{10} C_{3}, 1 / 2 \text { mark for each consistent factor) } \\
414720 x^{11} & =120\left(q^{7} x^{14}\right)\left(-\frac{27}{x^{3}}\right) & & 1 / 2 \text { mark for comparing coefficients } \\
414720 & =-3240 q^{7} & & \\
q^{7} & =-128 & & \\
q & =-2 & & \mathbf{3} \text { marks mark for solving for } q
\end{aligned}
$$

Bella has 2 pairs of shoes, 3 pairs of pants, and 10 shirts.
Carey has 4 pairs of shoes, 4 pairs of pants, and 4 shirts.
An outfit is made up of one pair of shoes, one pair of pants, and one shirt.
Who can make more outfits? Justify your answer.

Solution

Bella: $2 \times 3 \times 10=60$ outfits

Carey: $4 \times 4 \times 4=64$ outfits
\therefore Carey can make more outfits.

1 mark for justification
1 mark

In the binomial expansion of $(x-y)^{10}$, how many terms will be positive?
Justify your answer.

Solution

Six terms will be positive.
The term will be positive when " $-y$ " has an even exponent.

1 mark for six terms
1 mark for justification
2 marks

Solve the following equation algebraically where $180^{\circ} \leq \theta \leq 360^{\circ}$.

$$
2 \sin ^{2} \theta+5 \cos \theta+1=0
$$

Solution

$$
\begin{array}{rlrl}
2\left(1-\cos ^{2} \theta\right)+5 \cos \theta+1 & =0 & & 1 \text { mark for identity } \\
2-2 \cos ^{2} \theta+5 \cos \theta+1 & =0 & & \\
2 \cos ^{2} \theta-5 \cos \theta-3 & =0 & & \\
(2 \cos \theta+1)(\cos \theta-3) & =0 & & 1 \text { mark for solving for } \cos \theta \\
\cos \theta & =-\frac{1}{2} & \cos \theta & =3 \\
\theta_{r} & =60^{\circ} & & 1 \text { no solution } \\
\theta & =240^{\circ} & & 1 \text { mark for indicating no solution } \\
& & 4 \text { marks }
\end{array}
$$

Note(s):

- award a maximum of 3 marks if not solved algebraically

Solve the following equation algebraically:

$$
\log _{3}(x-4)+\log _{3}(x-2)=1
$$

Solution

Method 1

$$
\begin{aligned}
\log _{3}(x-4)+\log _{3}(x-2) & =1 \\
\log _{3}(x-4)(x-2) & =1 \\
3^{1} & =(x-4)(x-2) \\
3 & =x^{2}-6 x+8 \\
0 & =x^{2}-6 x+5 \\
0 & =(x-5)(x-1) \\
x & =5
\end{aligned}
$$

1 mark for product rule
1 mark for exponential form
$1 / 2$ mark for solving for x within a quadratic equation $1 / 2$ mark for rejecting extraneous root

3 marks

1 mark for product rule
$1 / 2$ mark for logarithmic form
$1 / 2$ mark for equating arguments
$1 / 2$ mark for solving for x within a quadratic equation
$1 / 2$ mark for rejecting extraneous roots

3 marks

Given that $f(x)=\{(1,3),(2,5),(3,4),(4,2)\}$, find $f(f(3))$.

Solution

$$
\begin{aligned}
f(f(3)) & =f(4) & & 1 / 2 \text { mark for } f(3)=4 \\
& =2 & & 1 / 2 \text { mark for } f(4)=2
\end{aligned}
$$

Given the graphs of $f(x)$ and $g(x)$ below,

sketch the graph of $y=f(x)-g(x)$.

Solution

x	$f(x)$	$g(x)$	$f(x)-g(x)$
-4	-2	3	-5
-2	0	1	-1
-1	1	0	1
0	2	1	1
2	4	3	1

1 mark for subtraction of $f(x)-g(x)$
1 mark for restricted domain
2 marks

Given the graph of $y=f(x)$, describe the transformations to obtain the graph of the function $y=f(2 x-6)$.

Solution

Method 1

Factor out the 2 .

$$
y=f(2(x-3))
$$

Horizontally compress by a factor of 2 .
Then shift 3 units to the right.

Method 2

$$
y=f(2 x-6)
$$

Shift 6 units to the right.
Then horizontally compress by a factor of 2 .

1 mark for starting with a horizontal compression by a factor of 2
1 mark for ending with a horizontal shift of 3 units to the right

1 mark for starting with a horizontal shift of 6 units to the right
1 mark for ending with a horizontal compression by a factor of 2

2 marks

Question 12
Given $f(x)=\{(-3,4),(2,7),(8,6)\}$, state the domain of the resulting function after $f(x)$ is reflected through the line $y=x$.

Solution

Domain: $\{4,6,7\} \quad 1$ mark for correct domain

1 mark

Note(s):

- award $1 / 2$ mark for stating the inverse of the function: $f^{-1}(x)=\{(4,-3),(7,2),(6,8)\}$

Determine the value of y in the following equation:

$$
\log _{x} 27-\log _{x} 3=2 \log _{x} y
$$

Solution

$\log _{x} 27-\log _{x} 3=2 \log _{x} y$

$$
\log _{x} \frac{27}{3}=2 \log _{x} y \quad 1 \text { mark for quotient rule }
$$

$\log _{x} 9=\log _{x} y^{2} \quad 1$ mark for power rule
$9=y^{2}$
$y= \pm 3$
$y=3 \quad y>-3 \quad 1 / 2$ mark for positive value of y
$1 / 2$ mark for negative value of y and rejecting extraneous root

3 marks

Question 14

Angle θ, measuring $\frac{5 \pi}{4}$, is drawn in standard position as shown below.
Determine the measures of all angles in the interval $[-4 \pi, 2 \pi]$ that are coterminal with θ.

Solution

$\theta=-\frac{3 \pi}{4}$
$1 / 2$ mark
$\theta=-\frac{11 \pi}{4}$
$1 / 2$ mark
1 mark

Prove the identity below for all permissible values of x :

$$
\frac{\sin ^{2} x}{\sec x+1}=\cos x-\cos ^{2} x
$$

Solution

Method 1

$$
\begin{aligned}
\text { LHS } & =\frac{1-\cos ^{2} x}{\frac{1}{\cos x}+1} \\
& =\frac{1-\cos ^{2} x}{\frac{1+\cos x}{\cos x}} \\
& =\left(1-\cos ^{2} x\right)\left(\frac{\cos x}{1+\cos x}\right) \\
& =(1-\cos x)(1+\cos x)\left(\frac{\cos x}{1+\cos x}\right) \\
& =(1-\cos x)(\cos x) \\
& =\cos x-\cos ^{2} x \\
& =\text { RHS }
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& \text { LHS }=\frac{\sin ^{2} x}{\sec x+1} \cdot \frac{(\sec x-1)}{(\sec x-1)} \\
& =\frac{\sin ^{2} x(\sec x-1)}{\sec ^{2} x-1} \\
& =\frac{\sin ^{2} x(\sec x-1)}{\tan ^{2} x} \\
& =\frac{\sin ^{2} x(\sec x-1)}{\frac{\sin ^{2} x}{\cos ^{2} x}} \\
& =\cos ^{2} x(\sec x-1) \\
& =\cos ^{2} x\left(\frac{1}{\cos x}-1\right) \\
& =\cos x-\cos ^{2} x \\
& =\text { RHS }
\end{aligned}
$$

1 mark for correct substitution of identities
1 mark for algebraic strategies
1 mark for logical process to prove the identity

3 marks

Solve algebraically:

$$
{ }_{n} C_{2}=4 n+5
$$

Solution

$$
\begin{array}{rlrl}
{ }_{n} C_{2} & =4 n+5 & \\
\frac{n!}{(n-2)!2!} & =4 n+5 & & 1 / 2 \text { mark for factorial notation } \\
\frac{n(n-1)(n-2)!}{(n-2)!2!} & =4 n+5 & & \\
n(n-1) & =2!(4 n+5) & & \\
n^{2}-n & =8 n+10 & 1 / 2 \text { mark for factorial expansion } \\
n^{2}-9 n-10 & =0 & & \\
(n-10)(n+1) & =0 & & 1 / 2 \text { mark for simplification of factorial } \\
n=10 & n & &
\end{array}
$$

Booklet 2 Questions

Answer Key for Multiple-Choice Questions

Question	Answer	Learning Outcome
17	C	P2
18	B	T1
19	A	P4
20	A	T4
21	D	T5
22	D	R4
23	C	R9
24	R12	

How many different arrangements are possible when arranging all of the letters of the word SEPTEMBER?
a) 9 !
b) $6!3$!
c) $\frac{9!}{3!}$
d) $\frac{6!}{3!}$

Which one of the following angles terminates in Quadrant III?
a) 3 radians
b) $\frac{7 \pi}{5}$ radians
c) -210°
d) 500°

Question 19
There are 13 terms in the expansion of $(3 x-y)^{2 n}$. Determine the value of n.
a) 6
b) 6.5
c) 7
d) 26

Which of the following is true about the periods of the three functions below?

$$
f(\theta)=2 \sin 3\left(\theta-\frac{\pi}{2}\right) \quad g(\theta)=\sin 3 \theta+6 \quad k(\theta)=3 \sin \theta+6
$$

a) The graphs of $f(\theta)$ and $g(\theta)$ have the same period.
b) The graphs of $g(\theta)$ and $k(\theta)$ have the same period.
c) All of the graphs have the same period.
d) None of the graphs have the same period.

Question 21

Which of the following represents the general solution to the equation $\tan \theta=-1$?
a) $\theta=\frac{\pi}{4}+2 k \pi, k \in \mathrm{I}$
b) $\theta=\frac{\pi}{4}+k \pi, k \in \mathrm{I}$
c) $\theta=\frac{3 \pi}{4}+2 k \pi, k \in \mathrm{I}$
d) $\theta=\frac{3 \pi}{4}+k \pi, k \in \mathrm{I}$

Question 22

If $(3,-2)$ is a point on the graph of $y=f(x)$, what point must be on the graph of $y=2 f(x+1) ?$
a) $(4,-1)$
b) $(4,-4)$
c) $(2,1)$
d) $(2,-4)$

Which equation is represented by the graph sketched below?
a) $y=\left(\frac{1}{2}\right)^{-x}$
b) $y=\left(\frac{1}{2}\right)^{x}$
c) $y=2^{x}$
d) $y=-2^{x}$

Question 24

What is the degree of the polynomial represented below?
a) 2
b) 3

c) 4
d) 5

Given the graph of $y=2 \cos \pi x+1$ below, determine another equation that will produce the same graph.

Solution

Some sample equations are:

$$
\begin{aligned}
& y=2 \cos \pi(x-2)+1 \\
& y=-2 \cos \pi(x-1)+1 \\
& y=-2 \cos \pi(x+1)+1 \\
& y=2 \sin \pi\left(x+\frac{1}{2}\right)+1 \\
& y=2 \sin \pi\left(x-\frac{3}{2}\right)+1
\end{aligned}
$$

1 mark for correct equation

Given $f(x)=3$ and $g(x)=x+2$, determine the domain and range of $h(x)=\frac{f(x)}{g(x)}$.

Solution

Domain: $\{x \mid x \in \mathbb{R}, x \neq-2\} \quad 1$ mark for domain
Range: $\{y \mid y \in \mathbb{R}, y \neq 0\} \quad 1$ mark for range

2 marks

Explain how to find the exact value of $\sec \left(\frac{19 \pi}{6}\right)$.

Solution

Find the exact value of $\cos \left(\frac{19 \pi}{6}\right)$.
Then take the reciprocal of the value of $\cos \left(\frac{19 \pi}{6}\right)$.

2 marks

Given $f(x)=4-x$, verify that $f^{-1}(x)=f(x)$.

Solution

Method 1

$$
y=4-x
$$

To find $f^{-1}(x)$, switch x and y values.

$$
\begin{array}{rlrl}
x & =4-y \\
-y & =x-4 \\
y & =4-x & \\
f^{-1}(x) & =4-x & & \\
& & \\
& & \\
& & \\
& \text { mark for verifying } f^{-1}(x)=f(x)
\end{array}
$$

Method 2

When $y=4-x$ is reflected over the line $y=x$ it produces the same graph. $\mathbf{1}$ mark

Method 3

Assume $f^{-1}(x)=4-x$.

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =4-(4-x) \\
& =x
\end{aligned}
$$

$\therefore f(x)$ and $f^{-1}(x)$ are inverses of one another.

1 mark

Sketch the graph of:

$$
f(x)=(2-x)(x+3)(x+1)^{2}
$$

Label the x-intercepts and y-intercept.

Solution

x-intercepts: $-3,-1$, and 2
y-intercept: 6

Which expression has a larger value?

$$
\log _{2} 36 \text { or } \log _{3} 80
$$

Justify your answer.

Solution

Method 1

$\therefore \log _{2} 36$ is the larger value
1 mark for justification

```
    1 mark
```


Method 2

$\log _{2} 32=5 \therefore \log _{2} 36$ is a little more than 5
$\log _{3} 81=4 \therefore \log _{3} 80$ is a little less than 4
$\therefore \log _{2} 36$ is the larger value

1 mark

The graph below represents the equation $y=a x^{3}+6 x^{2}+5 x-10$.

What must be true about the value of a ? Explain your reasoning.

Solution

a is any negative number.
Explanation with reference to end behaviour.
or
a cannot be zero.
The graph is of a cubic function, not a quadratic function.

1/2 mark
$1 / 2$ mark for explanation
1 mark
$1 / 2$ mark
$1 / 2$ mark for explanation

1 mark

The terminal arm of an angle θ, in standard position, intersects the unit circle in Quadrant IV at a point $\mathrm{P}\left(\frac{\sqrt{5}}{4}, y\right)$. Determine the value of $\sin \theta$.

Solution

Method 1

The point $\mathrm{P}(\theta)$ on the unit circle has coordinates $(\cos \theta, \sin \theta)$.

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 & & 1 / 2 \text { mark for showing } y=\sin \theta \\
\left(\frac{\sqrt{5}}{4}\right)^{2}+\sin ^{2} \theta & =1 & & 1 / 2 \text { mark for substitution } \\
\sin ^{2} \theta & =1-\frac{5}{16} & & \\
\sqrt{\sin ^{2} \theta} & =\sqrt{\frac{11}{16}} & & 1 / 2 \text { mark for solving for } \sin \theta \\
\sin \theta & = \pm \frac{\sqrt{11}}{4} & & 1 / 2 \text { mark for a negative } \sin \theta \text { value in Quadrant IV } \\
\sin \theta & =-\frac{\sqrt{11}}{4} & & \mathbf{2} \text { marks }
\end{aligned}
$$

Method 2

$$
\begin{array}{rlrl}
(\sqrt{5})^{2}+y^{2} & =4^{2} & & \\
5+y^{2} & =16 & & \\
y^{2} & =11 & & \\
y & = \pm \sqrt{11} & & 1 / 2 \text { mark for substitution for solving for } y \\
\sin \theta & =-\frac{\sqrt{11}}{4} & & 1 / 2 \text { mark for using the value of } y \text { to find the value of } \\
& & 1 / 2 \text { mark for a negative } \sin \theta \text { value in Quadrant IV }
\end{array}
$$

Given the sinusoidal function $f(x)$ below, sketch the graph of $g(x)=|f(x)|-1$.

Solution

The graph of a rational function, $f(x)$, has a point of discontinuity when $x=2$ and an asymptote when $x=4$. Write a possible equation for $f(x)$.

Solution

A possible equation is:

$$
f(x)=\frac{x-2}{(x-2)(x-4)}
$$

1 mark for $\frac{x-2}{x-2}$ (point of discontinuity when $x=2$)
1 mark for $x-4$ in denominator (asymptote when $x=4$)
2 marks

Question 35
R11

Given that $(x-1)$ is one of the factors, express $x^{3}-57 x+56$ as a product of factors.

Solution

1

1	0	-57	56
\downarrow	1	1	-56
1	1	-56	0

$1 / 2$ mark for $x=1$

1 mark for synthetic division (or for any other equivalent strategy)
$(x-1)\left(x^{2}+x-56\right)$
$1 / 2$ mark for consistent factors
or
$(x-1)(x+8)(x-7)$

Give an example using values for A and B, in degrees or radians, to verify that $\cos (A+B)=\cos A+\cos B$ is not an identity.

Solution

Method 1

Let $A=45^{\circ}$ and $B=90^{\circ}$.

LHS	RHS
$\cos \left(45^{\circ}+90^{\circ}\right)$	$\cos 45^{\circ}+\cos 90^{\circ}$
$\cos \left(135^{\circ}\right)$	$\cos 45^{\circ}+\cos 90^{\circ}$
$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}+0$
$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$

1 mark for simplification of $\cos (A+B)$
1 mark for simplification of $\cos A+\cos B$
2 marks

LHS \neq RHS $\therefore \cos (A+B)=\cos A+\cos B$ is not an identity.

Method 2

$\cos (A+B)=\cos A \cos B-\sin A \sin B$

Let $A=60^{\circ}$ and $B=30^{\circ}$.

$$
\begin{aligned}
\cos \left(60^{\circ}+30^{\circ}\right) & =\cos 60^{\circ} \cos 30^{\circ}-\sin 60^{\circ} \sin 30^{\circ} \\
& =\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}-\sqrt{3}}{4} \\
& =0 \quad 1 \text { mark for simplification of } \cos (A+B)
\end{aligned}
$$

$$
\begin{aligned}
\cos A+\cos B & =\cos 60^{\circ}+\cos 30^{\circ} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} \\
& =\frac{1+\sqrt{3}}{2}
\end{aligned}
$$

1 mark for simplification of $\cos A+\cos B$
2 marks

These two solutions are not equal $\therefore \cos (A+B)=\cos A+\cos B$ is not an identity.

Sketch the graph of $y=\sqrt{x+1}-2$ and verify that the value of the x-intercept is the same as the solution to the equation $\sqrt{x+1}-2=0$.

Solution

1 mark for general shape $1 / 2$ mark for horizontal shift $1 / 2$ mark for vertical shift

1 mark for verification

```
3 marks
```

Mohamed is asked to sketch the graph of $y=\tan x$.
His graph is shown below.

Explain why his graph is incorrect.

Solution

The graph of $y=\tan x$ should have zeros at $k \pi, k \in \mathrm{I}$.
or

1 mark for explanation
1 mark

The graph of $y=\tan x$ should have asymptotes at $(2 k+1) \frac{\pi}{2}$ or $\frac{\pi}{2}+k \pi, k \in \mathrm{I}$.
or
Mohamed sketched the incorrect graph. He sketched the graph of $y=\tan \left(x-\frac{\pi}{2}\right)$.

On the interval $0 \leq \theta<2 \pi$, identify the non-permissible values of θ for the trigonometric identity:

$$
\tan \theta=\frac{1}{\cot \theta}
$$

Solution

$$
\frac{\sin \theta}{\cos \theta}=\frac{1}{\frac{\cos \theta}{\sin \theta}}
$$

\therefore the above identity is non-permissible when $\cos \theta=0$ or $\sin \theta=0$.

$$
\begin{array}{rlrl}
\cos \theta & \neq 0 & \sin \theta & \neq 0 \\
\theta & \neq \frac{\pi}{2}, \frac{3 \pi}{2} & \theta \neq 0, \pi \\
\theta & \neq 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2} &
\end{array}
$$

1 mark for identifying non-permissible values
($1 / 2$ mark for $\cos \theta=0,1 / 2$ mark for $\sin \theta=0$)

1 mark for solving for θ ($1 / 2$ mark for each solution set)

2 marks

a) R 9
b) R2, R5
a) Sketch the graph of $y=\ln (x)$.
b) Sketch the graph of $y=-\ln (x-2)$.

Solutions

$1 / 2$ mark for increasing logarithmic function
$1 / 2$ mark for x-intercept at $(1,0)$
$1 / 2$ mark for consistent point on logarithmic function
$1 / 2$ mark for vertical asymptotic behaviour

2 marks

1 mark for reflection in x-axis
1 mark for horizontal shift
2 marks

Given $f(x)=\sqrt{x-2}$ and $g(x)=3 x$, write the equation for $h(x)=f(g(x))$.
What are the restrictions on the domain of $h(x)$?
Explain your reasoning.

Solution

$$
h(x)=\sqrt{3 x-2}
$$

1 mark for $h(x)=f(g(x))$

$$
\begin{aligned}
3 x-2 & \geq 0 \\
3 x & \geq 2
\end{aligned}
$$

$$
x \geq \frac{2}{3}
$$

$1 / 2$ mark for identifying restriction
Since we cannot find a square root of a negative number, there is a restriction on the domain, $x \geq \frac{2}{3}$.
$1 / 2$ mark for explanation
2 marks

Sketch the graph of $y=10 \cos \left[\frac{\pi}{2}(x-2)\right]$ over the interval $[0,6]$.

Solution

$$
\text { period }=\frac{2 \pi}{\frac{\pi}{2}}=4
$$

1 mark for amplitude
1 mark for period
1 mark for horizontal shift
3 marks

Note(s):

- deduct $1 / 2$ mark if the interval $[0,6]$ is not completely sketched

Sketch the graph of the function $f(x)=\frac{x^{2}}{x^{2}-x}$.

Solution

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{x(x-1)} \\
& =\frac{x}{x-1} \text { with a point of discontinuity where } x=0
\end{aligned}
$$

point of discontinuity: $f(0)=\frac{0}{0-1}=0$
\therefore there is a point of discontinuity at $(0,0)$.

\[

\]

\therefore horizontal asymptote at $y=1$
\therefore vertical asymptote at $x=1$

1 mark for vertical asymptote at $x=1$
1 mark for horizontal asymptote at $y=1$
1 mark for point of discontinuity at $(0,0)$ or a point of discontinuity consistent with graph
$1 / 2$ mark for graph left of vertical asymptote
$1 / 2$ mark for graph right of vertical asymptote

4 marks

Is $(x-3)$ a factor of $x^{4}-x^{3}-3 x^{2}+x-1$?
Justify your answer.

Solution

Method 1

$$
\begin{array}{rlrl}
x=3 & & 1 / 2 \text { mark for } x=3 \\
\therefore(3)^{4}-(3)^{3}-3(3)^{2}+(3)-1 & =81-27-27+3-1 & & 1 \text { mark for remainder theorem } \\
& =29 &
\end{array}
$$

The remainder does not equal zero, therefore $(x-3)$ is not a factor.
$1 / 2$ mark for explanation

2 marks

Method 2

3 | 1 | -1 | -3 | 1 | -1 |
| ---: | ---: | ---: | ---: | ---: |
| \downarrow | 3 | 6 | 9 | 30 |
| | \downarrow | 2 | 3 | 10 |

The remainder does not equal zero, therefore $(x-3)$ is not a factor.
$1 / 2$ mark for $x=3$

1 mark for synthetic division
$1 / 2$ mark for explanation
2 marks

Given $f(x)=x-1$ and $g(x)=x^{2}$, write the equation of $y=f(g(x))$ and sketch the graph.

Solution

$$
\begin{aligned}
& f(g(x))=x^{2}-1 \\
& \quad \text { or } \\
& y=x^{2}-1
\end{aligned}
$$

Appendices

Appendix A

MARKING GUIDELINES

Errors that are conceptually related to the learning outcomes associated with the question will result in a 1 mark deduction.
Each time a student makes one of the following errors, a $1 / 2$ mark deduction will apply.

- arithmetic error
- procedural error
- terminology error
- lack of clarity in explanation
- incorrect shape of graph (only when marks are not allocated for shape)

Communication Errors

The following errors, which are not conceptually related to the learning outcomes associated with the question, may result in a $1 / 2$ mark deduction and will be tracked on the Answer/Scoring Sheet.
$\left.\begin{array}{|c|ll}\hline \text { E1 } & \text { - } & \text { answer given as a complex fraction } \\ & \text { - } & \text { ansal answer not stated } \\ \text { E2 } & \text { - } & \text { changing an equation to an expression or vice versa } \\ & \text { - } & \text { equating the two sides when proving an identity }\end{array}\right]$

Appendix B

IRREGULARITIES IN PROVINCIAL TESTS

A GUIDE FOR LOCAL MARKING

During the marking of provincial tests, irregularities are occasionally encountered in test booklets. The following list provides examples of irregularities for which an Irregular Test Booklet Report should be completed and sent to the Department:

- completely different penmanship in the same test booklet
- incoherent work with correct answers
- notes from a teacher indicating how he or she has assisted a student during test administration
- student offering that he or she received assistance on a question from a teacher
- student submitting work on unauthorized paper
- evidence of cheating or plagiarism
- disturbing or offensive content
- no responses provided by the student (all "NR") or only incorrect responses ("0")

Student comments or responses indicating that the student may be at personal risk of being harmed or of harming others are personal safety issues. This type of student response requires an immediate and appropriate follow-up at the school level. In this case, please ensure the Department is made aware that follow-up has taken place by completing an Irregular Test Booklet Report.

Except in the case of cheating or plagiarism where the result is a provincial test mark of 0%, it is the responsibility of the division or the school to determine how they will proceed with irregularities. Once an irregularity has been confirmed, the marker prepares an Irregular Test Booklet Report documenting the situation, the people contacted, and the follow-up. The original copy of this report is to be retained by the local jurisdiction and a copy is to be sent to the Department along with the test materials.

Irregular Test Booklet Report

Test: \qquad
Date marked: \qquad
Booklet No.:

Problem(s) noted: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question(s) affected: \qquad
\qquad
\qquad

Action taken or rationale for assigning marks:

Follow-up:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decision:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Marker's Signature:

Principal's Signature:

\qquad

For Department Use Only—After Marking Complete

Consultant:
Date:

Appendix C

Table of Questions by Unit and Learning Outcome

Unit A: Transformations of Functions		
Question	Learning Outcome	Mark
9	R1	1
10	R1	2
11	R2, R3	2
12	R5	1
22	R4	1
26	R1	2
28	R6	1
33	R1, R2	2
$40 \mathrm{~b})$	R2, R5	2
41	R1, R13	2
45	R1	2
Unit B: Trigonometric Functions		
Question	Learning Outcome	Mark
1	T1	2
2	T3, T5	4
7	T3, T5, T6	4
14	T1	1
18	T1	1
20	T4	1
25	T4	1
27	T3	2
32	T2	2
38	T4	1
42	T4	3
Unit C: Binomial Theorem		
Question	Learning Outcome	Mark
4	P4	3
5	P1	1
6	P4	2
16	P3	3
17	P2	1
19	P4	1
Unit D: Polynomial Functions		
Question	Learning Outcome	Mark
24	R12	1
29	R12	3
31	R12	1
35	R11	2
44	R11	2

Unit E: Trigonometric Equations and Identities		
Question	Learning Outcome	Mark
2	T3, T5	4
7	T3, T5, T6	4
15	T6	3
21	T5	1
36	T6	2
39	T6	2
Unit F: Exponents and Logarithms		
Question	Learning Outcome	
3	R10	Mark
8	R10	3
13	R8	3
23	R9	3
30	R7	1
40 a)	R9	1
Question	Unit G: Radicals and Rationals	2
34	Learning Outcome	
37	R14	Mark
41	R13	2
43	R1, R13	3
	R14	2

[^0]: After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Text Book Bureau. Order online at <www.mtbb.mb.ca>.

 This resource will also be available on the Manitoba Education website at <www.edu.gov.mb.ca/k12/assess/archives/index.html>.

