Grade 12 Pre-Calculus Mathematics Achievement Test

Marking Guide

January 2016

Manitoba Education and Advanced Learning Cataloguing in Publication Data

Grade 12 pre-calculus mathematics achievement test. Marking guide. January 2016

Issued in print and electronic formats.

ISBN: 978-0-7711-6122-3 (print) ISBN: 978-0-7711-6123-0 (pdf)

1. Mathematics—Examinations, questions, etc.

2. Educational tests and measurements-Manitoba.

3. Mathematics—Study and teaching (Secondary)—Manitoba.

4. Pre-calculus—Study and teaching (Secondary)—Manitoba.

5. Mathematical ability—Testing.

I. Manitoba. Manitoba Education and Advanced Learning. 510.76

Manitoba Education and Advanced Learning School Programs Division Winnipeg, Manitoba, Canada

Permission is hereby given to reproduce this resource for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Learning Resource Centre (formerly the Manitoba Text Book Bureau). Order online at <www.mtbb.mb.ca>.

This resource will also be available on the Manitoba Education and Advanced Learning website at <www.edu.gov.mb.ca/k12/assess/archives/index.html>.

Websites are subject to change without notice.

Disponible en français.

Available in alternate formats upon request.

General Marking Instructions	1
Scoring Guidelines	5
Booklet 1 Questions	7
Booklet 2 Questions	
Answer Key for Selected Response Questions	
Appendices	113
Appendix A: Marking Guidelines	115
Appendix B: Irregularities in Provincial Tests	117
Irregular Test Booklet Report	119
Appendix C: Table of Questions by Unit and Learning Outcome	121

ii

Please do not make any marks in the student test booklets. If the booklets have marks in them, the marks will need to be removed by departmental staff prior to sample marking should the booklet be selected.

Please ensure that

- the booklet number and the number on the *Answer/Scoring Sheet* are identical
- students and markers use only a pencil to complete the Answer/Scoring Sheets
- the totals of each of the four parts are written at the bottom
- each student's final result is recorded, by booklet number, on the corresponding Answer/Scoring Sheet
- the *Answer/Scoring Sheet* is complete
- a photocopy has been made for school records

Once marking is completed, please forward the *Answer/Scoring Sheets* to Manitoba Education and Advanced Learning in the envelope provided (for more information see the administration manual).

Marking the Test Questions

The test is composed of constructed response questions and selected response questions. Constructed response questions are worth 1 to 5 marks each, and selected response questions are worth 1 mark each. An answer key for the selected response questions can be found at the beginning of the section "Booklet 2 Questions."

To receive full marks, a student's response must be complete and correct. Where alternative answering methods are possible, the *Marking Guide* attempts to address the most common solutions. For general guidelines regarding the scoring of students' responses, see Appendix A.

Irregularities in Provincial Tests

During the administration of provincial tests, supervising teachers may encounter irregularities. Markers may also encounter irregularities during local marking sessions. Appendix B provides examples of such irregularities as well as procedures to follow to report irregularities.

If an *Answer/Scoring Sheet* is marked with "0" and/or "NR" only (e.g., student was present but did not attempt any questions), please document this on the *Irregular Test Booklet Report*.

Assistance

If, during marking, any marking issue arises that cannot be resolved locally, please call Manitoba Education and Advanced Learning at the earliest opportunity to advise us of the situation and seek assistance if necessary.

You must contact the Assessment Consultant responsible for this project before making any modifications to the answer keys or scoring rubrics.

Youyi Sun Assessment Consultant Grade 12 Pre-Calculus Mathematics Telephone: 204-945-7590 Toll-Free: 1-800-282-8069, extension 7590 Email: youyi.sun@gov.mb.ca

Communication Errors

The marks allocated to questions are primarily based on the concepts and procedures associated with the learning outcomes in the curriculum. For each question, shade in the circle on the *Answer/Scoring Sheet* that represents the marks given based on the concepts and procedures. A total of these marks will provide the preliminary mark.

Errors that are not related to concepts or procedures are called "Communication Errors" (see Appendix A) and will be tracked on the *Answer/Scoring Sheet* in a separate section. There is a ½ mark deduction for each type of communication error committed, regardless of the number of errors per type (i.e., committing a second error for any type will not further affect a student's mark), with a maximum deduction of 5 marks from the total test mark.

The total mark deduction for communication errors for any student response is not to exceed the marks given for that response. When multiple communication errors are made in a given response, any deductions are to be indicated in the order in which the errors occur in the response, without exceeding the given marks.

The student's final mark is determined by subtracting the communication errors from the preliminary mark.

Example: A student has a preliminary mark of 72. The student committed two E1 errors (1/2 mark deduction), four E7 errors (1/2 mark deduction), and one E8 error (1/2 mark deduction). Although seven communication errors were committed in total, there is a deduction of only 11/2 marks.

		COMMU	NICATION	ERRORS	ERREUR	S DE COM	MUNICAT	ION	
Shade Noircir les ce	in the circ rcles ci-de	les below f ssous pou	for a maxi r une déd	mum total uction max	deduction imale tota	of 5 marks ale de 5 poi	s (0.5 mar nts (dédu	k deduction ction de 0,8	n per error). 5 point par erreur)
E1	0	E2	0	E3	0	E4	0	E5	0
E6	0	E7	0	E8	0	E9	0	E10	0

Example: Marks assigned to the student.

Mauka Awardad	Booklet 1	Selected Response	Booklet 2	Communication Errors (Deduct)	Total
Marks Awarded	25	7	40	11/2	70½
Total Marks	36	9	45	maximum deduction of 5 marks	90

Scoring Guidelines

Booklet 1 Questions

A pizza with a diameter of 15 inches is cut into equal slices, each with a central angle of 36° . Determine the length of the crust on the outer edge of one slice of pizza.

Solution

or

s = 4.712 inches

 $\frac{36^{\circ}}{180^{\circ}} = \frac{\theta}{\pi}$ $\theta = \frac{\pi}{5}$ 1 mark for conversion $s = \theta r$ $s = \left(\frac{\pi}{5}\right) \left(\frac{15}{2}\right)$ 1 mark for substitution $s = \frac{3\pi}{2} \text{ inches}$ 2 marks

+ 1 mark for substitution

E5 (missing units of measure)

Exemplar 2

2 out of 2

award full marks E6 (rounding too early)

Question 2

There are 9 girls and 7 boys in a math class from which a committee of 5 is to be chosen.

- a) How many different committees of 5 can be formed if one of the boys, William, must be on the committee?
- b) How many different committees of 5 can be formed if there must be 2 girls and 3 boys on the committee?

Solution

a) ${}_{1}C_{1} \cdot {}_{15}C_{4} = 1365$

1 mark

b)
$${}_{9}C_{2} \cdot {}_{7}C_{3} = 1260$$

 $\frac{1}{2}$ mark for ${}_{9}C_{2}$ $\frac{1}{2}$ mark for ${}_{7}C_{3}$ 1 mark for the product of combinations

2 marks

Note(s):

[•] ${}_{1}C_{1}$ does not need to be shown

a)

32160 committees can be formed.

0 out of 1

award full marks

- 1 mark for concept error (using permutations instead of combinations)

2 out of 2

award full marks (consistent with concept error in a) Exemplar 2

a) 1P1 = 1 15P1 = 32760 32760

0 out of 1

award full marks

- 1 mark for concept error (using permutations instead of combinations)

^{а)} 15^Сч

1 out of 1

award full marks E1 (final answer not stated)

Т5

Solve the following equation over the interval $[0, 2\pi]$:

 $\sin^2\theta + 6\sin\theta - 2 = 0$

Solution

$$\sin \theta = \frac{-6 \pm \sqrt{(6)^2 - 4(1)(-2)}}{2(1)}$$

$$\sin \theta = \frac{-6 \pm \sqrt{36 + 8}}{2}$$

$$\sin \theta = \frac{-6 \pm \sqrt{44}}{2}$$

$$\sin \theta = 0.316\ 624... \qquad \sin \theta = -6.316\ 624... \qquad 1 \text{ mark for solving for } \sin \theta$$

$$\theta_r = 0.322\ 169$$

$$\theta = 0.322 \qquad \text{no solution} \qquad 2 \text{ marks for solving for } \theta \ (\frac{1}{2} \text{ mark for each } \text{value, 1 mark for indicating no solution})$$

$$3 \text{ marks}$$

$$x^{2} + 6x - 2 = 0$$

$$x = -6 \pm \sqrt{6^{2} - 4(1)(2)}$$

$$= -6 \pm \sqrt{36 + 8}$$

$$2$$

$$= -6 \pm \sqrt{44}$$

$$= -6 \pm \sqrt{44}$$

+ 1 mark for solving for $\sin \theta$

- E3 (variable introduced without being defined)
- E7 (notation error in line 5)

 $\begin{aligned} \sin\theta &= \frac{-\beta \pm \sqrt{\beta^2 - 4(1)(-\beta)}}{\beta(1)} \\ &= -\frac{\beta \pm \sqrt{\beta^2 - 4(1)(-\beta)}}{2} \\ &= -\frac{\beta \pm \sqrt{\beta^2 - 4(1)}}{2} \\ &= -\frac{\beta \pm \sqrt{\beta^2 -$

- + 1 mark for solving for $\sin \theta$
- + 1 mark for two correct values of θ
- 1 mark for concept error (solutions in quadrants 3 and 4)

$$Sin \theta = \frac{-b \pm Jb^{2} - 4ac}{2a}$$

$$Sin \theta = \frac{-6 \pm J b^{2} - 4ac}{2(1)}$$

$$Sin \theta = \frac{-6 \pm J c^{2} - 4(1)(1-2)}{2(1)}$$

$$Sin \theta = \frac{-6 \pm J - 44}{2}$$

$$Sin \theta = 0.31662479$$

$$\Theta_{r} = 18.459^{\circ}$$

$$\Theta_{r} = 18.459^{\circ}$$

$$\Theta_{r} = 161.541^{\circ}$$

- -

2 out of 3

+ 1 mark for solving for $\sin \theta$

- + 1 mark for two correct values of θ
- E5 (answer stated in degrees instead of radians)

Solve:

 $6(5)^{3x+2} = 9^{2-x}$

Solution

 $\log\left[6(5)^{3x+2}\right] = \log 9^{2-x}$ $\log 6 + \log 5^{3x+2} = \log 9^{2-x}$

$$\log 6 + (3x + 2) \log 5 = (2 - x) \log 9$$

$$\log 6 + 3x \log 5 + 2 \log 5 = 2 \log 9 - x \log 9$$

$$3x \log 5 + x \log 9 = 2 \log 9 - 2 \log 5 - \log 6$$

$$x (3 \log 5 + \log 9) = 2 \log 9 - 2 \log 5 - \log 6$$

$$x = \frac{2 \log 9 - 2 \log 5 - \log 6}{3 \log 5 + \log 9}$$

$$x = -0.087 \ 707$$

$$= -0.088$$

- ¹/₂ mark for applying logarithms
- 1 mark for product law
- 1 mark for power law
- $\frac{1}{2}$ mark for collecting terms with *x*
- $\frac{1}{2}$ mark for solving for x
- $\frac{1}{2}$ mark for evaluating quotient of logarithms

4 marks

$$6(5^{3\times+\lambda}) = 9^{2-\chi}$$

$$\log 6(5)^{3\times+\lambda} = \log 9^{2-\chi}$$

$$(3\times+\lambda) \log 30 = 2 - \chi \log 9$$

$$3\times \log 30 + 2 \log 30 = 2 \log 9 - \chi \log 9$$

$$3\times \log 30 + \chi \log 9 = 2 \log 9 - 2 \log 30$$

$$\frac{\chi}{(3\log 30 + \log 9)} = 2 \log 9 - 2 \log 30$$

$$\frac{\chi}{3\log 30 + \log 9} = 3 \log 30 + \log 9$$

$$\chi = -0.194$$

- + $\frac{1}{2}$ mark for applying logarithms
- + 1 mark for power law
- + $\frac{1}{2}$ mark for collecting terms with x
- + $\frac{1}{2}$ mark for solving for x
- + $\frac{1}{2}$ mark for evaluating quotient of logarithms
- E4 (missing brackets but still implied in line 3)

$$6 (3x + 2) \log 5 = (2 - x) \log 9$$

$$(18x + 12) \log 5 = 2 \log 9 - x \log 9$$

$$18x \log 5 + 12 \log 5 = 2 \log 9 - x \log 9$$

$$18x \log 5 + x \log 9 = 2 \log 9 - 12 \log 5$$

$$X(18 \log 5 + \log 9) = 2 \log 9 - 12 \log 5$$

$$X = \frac{2 \log 9 - 12 \log 5}{18 \log 5 + \log 9}$$

$$X = -.. 1786$$

- + $\frac{1}{2}$ mark for applying logarithms
- + 1 mark for power law
- + $\frac{1}{2}$ mark for collecting terms with x
- + $\frac{1}{2}$ mark for solving for x
- + $\frac{1}{2}$ mark for evaluating quotient of logarithms

$$6(3x+2)(5) = (2-x)9$$

 $6(15x+10) = 18-9x$
 $90x+60 = 18-9x$
 $+9x$
 $+9x$
 $99x+60 = 18$
 $-60 - 60$
 $99x = -42$
 $99 = 99$
 $x = -,4242$

- + 1 mark for power law
- + $\frac{1}{2}$ mark for collecting terms with x
- + $\frac{1}{2}$ mark for solving for x
- 1 mark for concept error (using power law without logarithms)

Exemplar 4

Solve $(2\sin\theta - 1)(\sin\theta + 1) = 0$ where $\theta \in \mathbb{R}$.

Solution

$2\sin\theta - 1 = 0$	$\sin\theta + 1 = 0$	
$\sin\theta = \frac{1}{2}$	$\sin \theta = -1$	1 mark for solving for $\sin \theta$
$\theta_r = \frac{\pi}{6}$	$\theta_r = \frac{3\pi}{2}$	
$\theta = \frac{\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$	$\theta = \frac{3\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$	2 marks for solving for θ (1 mark for each branch)
$\theta = \frac{5\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$		1 mark for general solution

or

or

$$\begin{aligned} \theta_r &= 30^\circ & \theta_r = 270^\circ \\ \theta &= 30^\circ + 360^\circ k, \ k \in \mathbb{Z} & \theta = 270^\circ + 360^\circ k, \ k \in \mathbb{Z} \\ \theta &= 150^\circ + 360^\circ k, \ k \in \mathbb{Z} \end{aligned}$$

4 marks

$$2\sin \Theta - 1 = 0$$

$$\sin \Theta = \frac{1}{2}$$

$$\Theta = \sin^{-1}(\frac{1}{2})$$

$$\Theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\frac{\pi}{6} + 2k\pi, kez$$

$$sin\theta + 1 = 0$$

$$sin\theta = -1$$

$$\theta = sin^{-1}(-1)$$

$$\theta = \frac{3\pi}{2}$$

$$\frac{3\pi}{2} + 2k\pi, k \in \mathbb{Z}$$

31/2 out of 4

- + 1 mark for solving for $\sin \theta$
- + 2 marks for solving for θ
- + 1 mark for general solution

$$-\frac{1}{2}$$
 mark for procedural error (missing $\theta = \frac{5\pi}{6} + 2k\pi$)

E7 (notation error in lines 4 and 10)

$$\sin\theta = \frac{1}{2}$$
 $\sin\theta = 1$
 $\theta = \frac{\pi}{6}, 5\frac{\pi}{2}$ $\theta = \frac{\pi}{2}$

21/2 out of 4

- + 1 mark for solving for $\sin \theta$
- + 2 marks for consistent values of θ
- $-\frac{1}{2}$ mark for arithmetic error in line 1

Exemplar 3

$$sin\theta = \frac{1}{4} \quad sin\theta = -1$$

$$sin\theta = \frac{1}{6} \frac{547}{6} \quad sin\theta = \frac{347}{4}$$

$$sin\theta = \frac{17}{6} \frac{17}{6} \frac{1}{6} \frac{1}{6}$$

21/2 out of 4

award full marks

- 1 mark for concept error in lines 2 and 3
- $-\frac{1}{2}$ mark for procedural error when stating general solution $(k \in \mathbb{R})$

This page was intentionally left blank.

The roots of the polynomial equation $3(x-2)(x+1)^2 = 0$ are x = 2 and x = -1.

Explain what these roots represent on the graph of $p(x) = 3(x-2)(x+1)^2$.

Solution

They are the *x*-intercepts of the graph of p(x).

1 mark

The roots represent where the graph touches 0.

1/2 out of 1

award full marks $-\frac{1}{2}$ mark for lack of clarity in explanation

Exemplar 2

$$(2,0)$$
 and $(-1,0)$

0 out of 1

Exemplar 3

They are the zeroes of the graph.

$$g(x) = \frac{\lambda(x+6)}{2}$$

award full marks -1 mark for concept error (not stating in terms of f(x)).

Exemplar 2

$$g(x) = 29(x+6)$$

11/2 out of 2

award full marks $-\frac{1}{2}$ mark for procedural error (stating g instead of f).

Exemplar 3

$$g(x) = 2(-f(x))$$

1 out of 2

+ 1 mark for vertical stretch

A student must determine the factors of $5x^4 - 2x^3 + 4x - 1$. He used 5, -2, 4, and -1 as the coefficients of the polynomial when using synthetic division. Explain the student's error.

Solution

The student did not write the coefficient of 0 for the x^2 term.

1 mark

they didn't put in an
$$x^2$$
 term

Exemplar 2

They need a placeholder.

1/2 out of 1

award full marks $-\frac{1}{2}$ mark for lack of clarity in explanation

Exemplar 3

They forgot a Zerd

¹/₂ out of 1
award full marks
- ¹/₂ mark for lack of clarity in explanation

Exemplar 4

The equation 5x"-2x3+4x-1 doesn't have an x3 So the student folgot to Rt q 1 in it's Place When using Synthetic Division.

Describe the transformations of y = f(x) when asked to sketch the graph of y = -f(x-4).

Solution

f(x) is reflected over the x-axis and translated 4 units to the right.

mark for vertical reflection
 mark for horizontal translation

2 marks
the graph would shift 4 units right and the graph would flip over the xaxis

Exemplar 2

1 out of 2

+ 1 mark for horizontal translation

Prove the identity below for all permissible values of θ :

$$\sin\theta + \frac{\cos\theta}{\tan\theta} = \frac{1}{\cos\theta\tan\theta}$$

Solution

Method 1

Left-Hand Side	Right-Hand Side	
$\sin\theta + \frac{\cos\theta}{\tan\theta}$	$\frac{1}{\cos\theta\tan\theta}$	
$\sin\theta + \frac{\cos\theta}{\frac{\sin\theta}{\cos\theta}}$	$\frac{1}{\cos\theta\frac{\sin\theta}{\cos\theta}}$	1 mark for correct substitution of identities
$\sin\theta + \frac{\cos^2\theta}{\sin\theta}$	$\frac{1}{\sin \theta}$	1 mark for algebraic strategies
$\frac{\sin^2\theta}{\sin\theta} + \frac{\cos^2\theta}{\sin\theta}$		1 mark for logical process to prove an identity
$\frac{\sin^2\theta + \cos^2\theta}{\sin\theta}$		3 marks
$\frac{1}{\sin\theta}$		

Method 2

Left-Hand Side	Right-Hand Side	
$\sin\theta + \frac{\cos\theta}{\tan\theta}$	$\frac{1}{\cos\theta\tan\theta}$	
	$\frac{1}{\cos\theta \frac{\sin\theta}{\cos\theta}}$	1 mark for correct substitution of identities
	$\frac{1}{\sin \theta}$	
	$\frac{\sin^2\theta + \cos^2\theta}{\sin\theta}$	
	$\frac{\sin^2\theta}{\sin\theta} + \frac{\cos^2\theta}{\sin\theta}$	
	$\sin\theta + \cos\theta \frac{\cos\theta}{\sin\theta}$	1 mark for algebraic strategies
	$\sin\theta + \cos\theta \cot\theta$	
	$\sin\theta + \frac{\cos\theta}{\tan\theta}$	1 mark for logical process to prove an identity
		5 marks

+ 1 mark for correct substitution of identities

award full marks E7 (transcription error in line 4) Describe how to use the graphs of $f(x) = 3\sin x$ and g(x) = 2 to solve the equation $3\sin x = 2$.

Solution

The solution will be the *x*-values where the two graphs intersect.

1 mark

Exemplar 2

set F(x) = g(x) and solve algebraically

0 out of 1

Question 12

A hockey arena has 5 doors.

Determine the number of ways that you can enter through one door but exit through a different door.

Solution

 $5 \cdot 4 = 20$ ways

1 mark

51 = 5×4×3×2×1 = [120]

Given that (x+3) is one of the factors, express $2x^3 + 7x^2 + 2x - 3$ as a product of factors.

Solution

-3	2	7	2	-3
	\downarrow	-6	-3	3
	2	1	-1	0

 $\frac{1}{2}$ mark for x = -31 mark for synthetic division (or for any other equivalent strategy)

$(x+3)\left(2x^2+x-1\right)$	
or	
(x+3)(2x-1)(x+1)	

 $\frac{1}{2}$ mark for consistent product of factors

$$-3 \begin{vmatrix} 2 & 7 & -2 & -3 \\ -6 & -3 & 3 \\ 2 & 1 & -1 & 0 \end{vmatrix}$$

$$2x^2 + x - 1$$

11/2 out of 2

+ $\frac{1}{2}$ mark for x = -3

+ 1 mark for synthetic division

Exemplar 2

2 out of 2

award full marks E4 (missing brackets but still implied in lines 3 and 5) This page was intentionally left blank.

Booklet 2 Questions

Answer Key for Selected Response Questions

Question	Answer	Learning Outcome
14	С	R12
15	С	R3
16	В	T1
17	В	T6
18	D	P4
19	В	R12
20	С	T6
21	А	R14

Identify the maximum number of *x*-intercepts for a polynomial function of degree 3.

Question 15

R3

The graph of y = f(x) contains the point (a, b). The graph of g(x) is a transformation of the graph of f(x) and contains the point (3a, b).

Identify the function that represents g(x).

- a) g(x) = f(3x)
- b) g(x) = 3f(x)

c)
$$g(x) = f\left(\frac{x}{3}\right)$$

d)
$$g(x) = \frac{1}{3}f(x)$$

Question 16

The angle 2.95 radians, in standard position, terminates in quadrant:

d) IV

Τ1

Evaluate:

Question 18

Identify which of the following represents the 5th term in the expansion of $(4x^2 - 2y^3)^{15}$.

a) ${}_{15}C_5(4x^2)^{10}(-2y^3)^5$ b) ${}_{15}C_5(4x^2)^{11}(-2y^3)^4$ c) ${}_{15}C_4(4x^2)^{10}(-2y^3)^5$ d) ${}_{15}C_4(4x^2)^{11}(-2y^3)^4$ P4

Identify which of the following graphs of polynomial functions has a zero with a multiplicity of 3.

Question 20

A non-permissible value of x for the function $f(x) = \frac{1}{\cos x + 1}$ is:

Question 21

Identify which of the following statements is true for the rational function $f(x) = \frac{4(x-1)(x-2)}{(x-1)(x+3)}$.

- a) The equation of the horizontal asymptote is y = 4.
- b) The equation of the vertical asymptote is x = 1.
- c) The y-intercept is 0.
- d) There is a point of discontinuity (hole) when x = 2.

R14

This page was intentionally left blank.

Solution

$$p(x) = 3(x+2)^2(x-1)^2$$

1 mark for factors

1 mark for multiplicity of 2 (1/2 mark for each)

1 mark for correct value of *a* (consistent with factors and multiplicity)

3 marks

Exemplar 1

$$p(x) = (x+2)(x-1)^{2}$$

11/2 out of 3

+ 1 mark for factors + $\frac{1}{2}$ mark for multiplicity of 2

Exemplar 2

$$a(0-2)^{2}(0+1)^{2} = 12$$

 $a(-2)^{2}(1)^{2} = 12$
 $4a = 12$
 $a = 3$

 $p(x) = 3((x-2)^{2}((x+1))^{2}$

2 out of 3

- + 1 mark for multiplicity of 2
- + 1 mark for correct value of a (consistent with factors and multiplicity)

Exemplar 3

 $p(x) = \frac{(\chi+2)^2(\chi-1)^2 + 12}{(\chi-1)^2 + 12}$

2 out of 3

- + 1 mark for factors
- + 1 mark for multiplicity of 2

Evaluate:

 $\log_4 2$

Solution

 $\frac{1}{2}$ 1 mark

$$4^{\times}=2$$

 $4^{\frac{1}{2}}=2$

award full marks E3 (variable introduced without being defined)

Exemplar 2

= 2

0 out of 1

Exemplar 3

$$log_{y} 2 = X$$

$$4^{X} = 2$$

$$2^{2^{X}} = 2$$

$$2x = 1$$

$$x = V$$

1 out of 1

2

Evaluate:

$$\left(\cos\frac{11\pi}{3}\right)\left(\csc\frac{11\pi}{6}\right)$$

Solution

 $\left(\frac{1}{2}\right)(-2)$ $1 \text{ mark for } \cos\frac{11\pi}{3} (\frac{1}{2} \text{ mark for the quadrant}, \frac{1}{2} \text{ mark for the value})$ $1 \text{ mark for } \csc\frac{11\pi}{6} (\frac{1}{2} \text{ mark for the quadrant}, \frac{1}{2} \text{ mark for the value})$ -1

2 marks

 $\begin{pmatrix} 2\\ \sqrt{3} \end{pmatrix}$ 13-2 $\left(\cos\frac{1\pi}{3}\right)$ $\left(\cos\frac{11\pi}{3}\right)\left(\csc\frac{11\pi}{6}\right) = 1$

1/2 out of 2

+ $\frac{1}{2}$ mark for correct quadrant for $\cos\frac{11\pi}{3}$

Exemplar 2

$$-\binom{1}{2}\cdot(-2) = ($$

11/2 out of 2

+ $\frac{1}{2}$ mark for the value of $\cos\frac{11\pi}{3}$ + 1 mark for $\csc\frac{11\pi}{6}$

Exemplar 3

$$\left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{5}}\right)$$
 $\frac{1}{\sqrt{5}}$ $\frac{1}{\sqrt{5}}$

1 out of 2

+ 1 mark for $\cos\frac{11\pi}{3}$

Estimate the value of $\log_2 5$.

Justify your answer.

Solution

 $\log_{2} 4 = 2$ $\log_{2} 8 = 3$ ^{1/2} mark for justification $\therefore \log_{2} 5 \approx 2.3$ ^{1/2} mark for estimated value in the interval [2.1, 2.4]

$$log_{2} S = x$$

$$\frac{2^{2} = 5}{2^{2} = 4}$$
4 is close to 5
therefore my estimation
for the value of
$$log_{2} S \approx 2$$

$$log_{2} S \approx 2$$

1/2 out of 1

+ ¹/₂ mark for justification

Exemplar 2

$$\log_2 5 = y$$

The reason it's a decimal is because no whole number gives 5 once we put 2 with an exponent, therefore must be a decimal.

0 out of 1

If θ terminates in quadrant III and $\cos \theta = -\frac{6}{7}$, determine the exact value of $\tan \theta$.

Solution

$$\cos \theta = \frac{x}{r}$$

$$x^{2} + y^{2} = r^{2}$$

$$y^{2} = (7)^{2} - (-6)^{2}$$

$$y^{2} = 13$$

$$y = \pm \sqrt{13}$$

$$\tan \theta = \frac{\sqrt{13}}{6}$$

$$y = \frac{\sqrt{13}}{6}$$

[uadrant, $\frac{1}{2}$ mark for the value)

2 marks

- + $\frac{1}{2}$ mark for substitution of x = -6 and r = 7
- + $\frac{1}{2}$ mark for solving for y
- + $\frac{1}{2}$ mark for the value of tan θ
- $-\frac{1}{2}$ mark for arithmetic error in line 3
- E3 (variable omitted in an equation in line 5)

Given $f(x) = x^2 + x - 4$ and $g(x) = \sqrt{x+5}$, Taz was asked to find f(g(x)).

Taz's solution:

$$f(g(x)) = (\sqrt{x+5})^{2} + x - 4$$

= x+5+x-4
= 2x+1, x \ge -5

Describe the error in Taz's solution.

Solution

Taz must substitute g(x) in both terms containing x in f(x) and then simplify.

1 mark

He should have multiplied f(x) and g(x).

Exemplar 2

Taz made a misfake because he didn't substitute g(x) correctly.

1/2 out of 1

award full marks

 $-\frac{1}{2}$ mark for lack of clarity in explanation

Solution

1 mark for increasing logarithmic function 1 mark for vertical stretch

1 mark for asymptotic behaviour at x = -1

3 marks

Exemplar 1

2 out of 3

- + 1 mark for increasing logarithmic function
- + 1 mark for vertical stretch
- E1 (final answer not stated)

Exemplar 2

1 out of 3

+ 1 mark for vertical stretch

award full marks

1 mark for concept error (a graph of an exponential function was sketched instead of a logarithmic function)

Write an equation of a rational function that would not have any vertical asymptotes.

Solution

Various equations, such as the following, are possible:

$$y = \frac{(x-2)(x+1)}{(x-2)}$$

or
$$y = \frac{4}{x^2 + 4}$$

1 mark
$$F(x) = \frac{1(x+d)}{(x+d)}$$

1 out of 1

Exemplar 2

Determine the exact value of $\tan 75^{\circ}$.

Solution

$$\tan 75^\circ = \tan \left(30^\circ + 45^\circ \right)$$
$$= \frac{\tan 30^\circ + \tan 45^\circ}{1 - \tan 30^\circ \tan 45^\circ}$$
$$= \frac{\frac{1}{\sqrt{3}} + 1}{1 - \frac{1}{\sqrt{3}}(1)}$$
$$= \frac{\frac{1 + \sqrt{3}}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}}$$
$$= \frac{1 + \sqrt{3}}{\sqrt{3} - 1}$$
or

$$=\frac{\sqrt{3}+3}{3-\sqrt{3}}$$

1 mark for combination

1 mark for exact values ($\frac{1}{2}$ mark for each)

2 marks

Note(s):

[•] Other combinations are possible.

- + 1 mark for exact values
- $-\frac{1}{2}$ mark for arithmetic error in line 4

Exemplar 2

$$fan(30^{\circ} + 45^{\circ}) = \frac{tand + tanB}{1 - tana tanB}$$

$$fan(30^{\circ} + 45^{\circ}) = \frac{13 + 1}{1 - \frac{1}{5}(1)}$$

$$= \frac{\sqrt{5} + 1}{1 - \frac{5}{5}}$$

11/2 out of 2

- + 1 mark for combination
- + $\frac{1}{2}$ mark for exact value of tan 45°

$$\tan (120^{\circ} - 45^{\circ}) = \tan 120^{\circ} - \tan 45^{\circ}$$

$$I + \tan 120^{\circ} (\tan 45^{\circ})$$

$$= -\frac{\sqrt{3} - 1}{1 + (-\sqrt{3})(1)}$$

$$= -\frac{\sqrt{3} - 1}{1 - \sqrt{3}}$$

This page was intentionally left blank.

Sketch the graph of the following function:

$$f(x) = \frac{(x+3)(x-3)}{x(x-3)}$$

Solution

$$f(x) = \frac{(x+3)(x-3)}{x(x-3)} = \frac{x+3}{x}, x \neq 3$$

: there is a point of discontinuity (hole) at (3, 2)

1 mark for asymptotic behaviour at y = 11 mark for asymptotic behaviour at x = 01 mark for point of discontinuity (hole) at (3, 2) ($\frac{1}{2}$ mark for x = 3, $\frac{1}{2}$ mark for y = 2) ($\frac{1}{2}$ mark for graph left of vertical asymptote ($\frac{1}{2}$ mark for graph right of vertical asymptote

4 marks

4 out of 4

award full marks E10 (asymptote missing but still implied at x = 0)

- + 1 mark for asymptotic behaviour at x = 0
- + 1 mark for point of discontinuity (hole) at (3, 2)
- + $\frac{1}{2}$ mark for graph left of vertical asymptote
- + $\frac{1}{2}$ mark for graph right of vertical asymptote

This page was intentionally left blank.

In the binomial expansion of $\left(\frac{1}{x^3} - 2x^2\right)^9$, determine which term contains x^3 .

Solution

Method 1

 $x^{3} = (x^{-3})^{9-k} (x^{2})^{k}$ $x^{3} = x^{-27+3k+2k}$ 3 = -27 + 3k + 2k 30 = 5k6 = k

 \therefore term 7 would contain x^3

$\frac{1}{2}$ mark for substitution

 $\frac{1}{2}$ mark for solving for k

1 mark for identifying the 7th term (or consistent term with the value of *k*)

2 marks

Method 2

$$\left(\frac{1}{x^3}\right)^9, \left(\frac{1}{x^3}\right)^8 (x^2), \left(\frac{1}{x^3}\right)^7 (x^2)^2$$
$$x^{-27}, x^{-22}, x^{-17}$$

 \therefore term 7 would contain x^3

1 mark for identifying the 7th term

1 mark for determining the pattern

(or consistent term with the pattern)

2 marks

$$\begin{aligned} t_{k+1} &= {}_{q}C_{k} \left(\frac{1}{x^{3}}\right)^{q-k} \left(-2 x^{a}\right)^{k} & {}^{k=6} \\ \left(\frac{1}{x^{3}}\right)^{q-6} \left(-2 x^{a}\right)^{6} \\ \left(\frac{1}{x^{3}}\right)^{3} \left(-2 x^{a}\right) \\ \left(\frac{1}{x^{a}}\right) \left(-2 x^{a}\right) &= -\frac{2 x^{a}}{x^{a}} \\ &= -2 x^{3} \end{aligned}$$

Method 1

- + $\frac{1}{2}$ mark for substitution
- + $\frac{1}{2}$ mark for solving for k
- $-\frac{1}{2}$ mark for arithmetic error in line 3
- E2 (changing an equation to an expression)

Exemplar 2

1 out of 2

+ 1 mark for identifying the 7th term

José and Dana get on a Ferris wheel, which is 1 metre off the ground. The diameter of the Ferris wheel is 16 metres. Their ride lasts for 4 minutes, in which time the Ferris wheel makes one revolution.

Determine the values of A, B, C, and D, if the sinusoidal function that models the situation is $h(t) = A \cos[B(t - C)] + D$, where h is the height at which José and Dana are located on the Ferris wheel, from the ground, in metres, and t is the time, in minutes.

<i>A</i> = <u>8</u>	or	A = <u>-8</u>	1 mark for A
$B = \frac{\pi}{2}$		$B = \frac{\pi}{2}$	1 mark for <i>B</i>
C = 2		C = 0	1 mark for C
<i>D</i> =9		<i>D</i> =9	1 mark for D
			4 marks

Note(s)

Other answers are possible.

 $A = \underline{\beta}$ $B = \underline{\pi} = \beta \pi$ $C = \underline{\beta}$

31/2 out of 4

award full marks

 $-\frac{1}{2}$ mark for arithmetic error in calculating the value of B

Solve algebraically:

$$_{n}P_{3} = 4!(n-1)$$

Solution

$$\frac{n!}{(n-3)!} = 4!(n-1)$$

$$\frac{n(n-1)(n-2)(n-3)!}{(n-3)!} = 4!(n-1)$$

$$n(n-2) = 24$$

$$n^2 - 2n - 24 = 0$$

$$(n-6)(n+4) = 0$$

$$n = 6 \quad n \ge 4$$

¹/₂ mark for substitution

1 mark for factorial expansion 1/2 mark for simplification of factorials

 $\frac{1}{2}$ mark for rejecting extraneous root $\frac{1}{2}$ mark for the value of *n*

3 marks

$$\frac{n!}{n-3!} = 4!(n-1)$$

$$\frac{n(n-1)(n-2)(n-3)!}{(n-3)!} = 4!(n-1)$$

$$n(n-1)(n-2) = 4!(n-1)$$

$$(n^{2}-n)(n-2) = 24(n-1)$$

$$n^{3}-2n^{2}-n^{2}+2n = 24n-24$$

$$n^{3}-3n^{2}+2n = 24n-24$$

$$n^{3}-3n^{2}-22n+24 = 0$$

$$(n-1)$$

$$(n-1)$$

$$(n-1)(n^{2}-2n-24)$$

$$(n-1)(n^{2}-2n-24)$$

$$(n-1)(n-6)(n+4)$$

$$n=1$$

$$n=6$$

$$n=4$$

1

- + $\frac{1}{2}$ mark for substitution
- + 1 mark for factorial expansion
- + $\frac{1}{2}$ mark for simplification of factorials
- + $\frac{1}{2}$ mark for values for *n*
- E4 (missing brackets but still implied in line 1)
- E2 (changing an equation to an expression in lines 9 and 10)

$$\frac{n!}{(n-3)!} = 4!(n-1)$$

$$\frac{(n)(n-1)(n-2)(n-3)!}{(n-2)!} = 4!(n-1)$$

$$\frac{(n)(n-1)(n-2)}{(n-2)!} = 24$$

$$(n)(n-2) = 24$$

$$(n)(n-2) = 24$$

$$(n)(n-2) = 6 \times 4$$

$$n = 6$$

- + $\frac{1}{2}$ mark for substitution
- + 1 mark for factorial expansion
- + $\frac{1}{2}$ mark for simplification of factorials
- + $\frac{1}{2}$ mark for the value of *n*

- + 1 mark for factorial expansion
- + $\frac{1}{2}$ mark for simplification of factorials

Given $f(x) = \frac{2}{x-1}$, determine the equation of the inverse, $f^{-1}(x)$. Solution Method 1 let y = f(x) $f(x) = \frac{2}{x-1}$ $y = \frac{2}{x - 1}$ $x = \frac{2}{y - 1}$ 1 mark for switching x and y values $y-1=\frac{2}{x}$ $y = \frac{2}{r} + 1$ $\frac{1}{2}$ mark for solving for y $f^{-1}(x) = \frac{2}{x} + 1$ $\frac{1}{2}$ mark for writing equation of $f^{-1}(x)$ 2 marks Method 2 let y = f(x) $f(x) = \frac{2}{x-1}$ $y = \frac{2}{x-1}$ $x = \frac{2}{v - 1}$ 1 mark for switching x and y values x(y-1) = 2xy - x = 2xy = 2 + x $y = \frac{2+x}{x}$ $\frac{1}{2}$ mark for solving for y $f^{-1}(x) = \frac{2+x}{x}$ $\frac{1}{2}$ mark for writing equation of $f^{-1}(x)$ 2 marks

 $f(x) = \frac{2}{x-1}$ let f(x) = y $y = \frac{2}{x-1}$ $x = \frac{2}{y-1}$ x (y-1) = 2 yx - x = 2 $yx = \frac{2x}{x}$ $y = \frac{2x}{x}$ y = x $f(x)^{-1} = x$

1 out of 2

Method 2

+ 1 mark for switching x and y values

Exemplar 2

X=	<u>2</u> y-1
y-1	$=\frac{2}{X}$
y =	$\frac{2}{X}$ +

11/2 out of 2

Method 1

+ 1 mark for switching x and y values

l

+ $\frac{1}{2}$ mark for solving for y

Solve:

$$4\log_3 2 - \frac{1}{3}\log_3 8 = \log_3 a$$

Solution

Method 1

$$\log_3 2^4 - \log_3 8^{\frac{1}{3}} = \log_3 a$$
$$\log_3 16 - \log_3 2 = \log_3 a$$
$$\log_3 \left(\frac{16}{2}\right) = \log_3 a$$
$$\log_3 8 = \log_3 a$$
$$a = 8$$

R8

1 mark for power law ($\frac{1}{2}$ mark for each)

1 mark for quotient law

1 mark for equating arguments

3 marks

Method 2

$$\log_{3} 2^{4} - \log_{3} 8^{\frac{1}{3}} - \log_{3} a = 0$$
$$\log_{3} 16 - \log_{3} 2 - \log_{3} a = 0$$
$$\log_{3} \left(\frac{16}{2a}\right) = 0$$
$$\log_{3} \left(\frac{8}{a}\right) = 0$$
$$3^{0} = \frac{8}{a}$$
$$1 = \frac{8}{a}$$
$$a = 8$$

1 mark for power law (1/2 mark for each)

1 mark for quotient law

1 mark for exponential form

3 marks

$$log_{3}\left(\frac{24}{38}\right) = log_{3}a$$

$$log_{3}\left(\frac{16}{2}\right) = log_{3}a$$

$$log_{3}\left(\frac{16}{2}\right) = log_{3}a$$

$$log_{3}(8) = log_{3}a$$

$$8 = a$$

Method 1 award full marks - ½ mark for procedural error in line 3

Exemplar 2

- + 1 mark for power law
- 1 mark for concept error (using power law without logarithms)

Sketch the graph of at least one period of the function $y = 3\cos(\pi x) - 1$.

Solution

Exemplar 1

1 out of 3

+ 1 mark for amplitude

E9 (scale values on y-axis not indicated)

Exemplar 2

- + 1 mark for amplitude
- + 1 mark for vertical translation

Using the laws of logarithms, fully expand the expression:

$$\log_a\left(\frac{x^3}{y\sqrt{z}}\right)$$

Solution

$$\log_{a}\left(\frac{x^{3}}{y\sqrt{z}}\right) = \log_{a} x^{3} - \left(\log_{a} y + \log_{a} \sqrt{z}\right)$$
$$= 3\log_{a} x - \left(\log_{a} y + \frac{1}{2}\log_{a} z\right)$$
$$= 3\log_{a} x - \log_{a} y - \frac{1}{2}\log_{a} z$$

1 mark for quotient law 1 mark for product law

1 mark for power law ($\frac{1}{2}$ mark for each)

3 marks

10ga X3 - 10ga YJZ 310ga X - 10ga YJZ

+ 1 mark for quotient law

 $+\frac{1}{2}$ mark for power law

Exemplar 2

21/2 out of 3

award full marks

 $-\frac{1}{2}$ mark for arithmetic error in line 2

Question 39

Sketch the graph of $f(x) = 3\sqrt{x-2} + 1$.

Solution

mark for horizontal translation
 mark for vertical translation
 mark for shape of a radical function
 mark for vertical stretch

4 marks

1 mark for invariant points where y = 0and y = 1 (¹/₂ mark for each point)

1 mark for domain $[2, \infty)$

¹/₂ mark for shape between invariant points

 $\frac{1}{2}$ mark for shape to the right of the invariant points

1 mark for applying transformations $(\frac{1}{2} \text{ mark for vertical stretch}, \frac{1}{2} \text{ mark for vertical translation})$

4 marks

Method 1

- award full marks
- $-\frac{1}{2}$ mark for arithmetic error in line 1

Exemplar 2

21/2 out of 4

Method 1

- + 1 mark for horizontal translation
- + 1 mark for vertical translation
- + 1 mark for shape of a radical function
- $-\frac{1}{2}$ mark for procedural error (not including a minimum of 2 points on the graph)

This page was intentionally left blank.

- a) Determine the domain of the graph of the function $f(x) = \sqrt{x^2 4}$.
- b) Explain why the domain of $f(x) = \sqrt{x^2 4}$ is restricted.

Solution

a) $\{x \mid x \leq -2 \quad \cup \quad x \geq 2\}$ or D: $(-\infty, -2] \cup [2, \infty)$

1 mark for domain (½ mark for $x \le -2$, ½ mark for $x \ge 2$)

b) The domain is restricted because you cannot take the square root of a negative number.

1 mark

Exemplar 1

a) $x^{2} - 4$

J2²-4 {*xer; x>2}

1/2 out of 1

+ ½ mark for domainE8 (bracket error made when stating domain)

b)

because we cannot with a negative root, & (1-2) is impossible,

a) (-9)2 = 181 =9 $\chi > 0$ 0 out of 1 b) You cannot J a negative number. Once you square a negative number the J will come out positive, changing question.

1/2 out of 1

award full marks

 $-\frac{1}{2}$ mark for lack of clarity in explanation

a)

domain: (∞,∞)

0 out of 1

b)

because the domain should be only positive and not regative due to the hadical.

Given the point (-12, -18) on the graph of f(x), determine the new points after the following transformations of f(x).

a) $\frac{1}{f(x)}$ b) f(-x) + 10

Solution

a)	$\left(-12, \frac{-1}{18}\right)$	1 mark
----	-----------------------------------	--------

b) (12, -8) 1 mark (¹/₂ mark for *x*-value, ¹/₂ mark for *y*-value) 1 mark

Exemplar 1			
a)			
(x,y)			
(4,8)			
(18,-12)			

0 out of 1

1⁄2 out of 1

+ $\frac{1}{2}$ mark for *y*-value

Exemplar 2

a)

$$\left(\frac{1}{12}, \frac{-1}{18}\right)$$

Explain why there is no solution for the equation $\csc \theta = -\frac{1}{2}$.

Solution

The value of $\csc \theta$ cannot be between -1 and 1.

or

1 mark

The value of $\sin \theta$ cannot be less than -1.
Because (SCO = - 1/2 is equal to sino = - 2/1 therefore sino = -2. sino = -2 is not on the unit circle.

1 out of 1

Exemplar 2

Here is no value for sin - 2 or 2 sin 2 be cause the function of sin only ranges from (-1, 1)

1 out of 1

Exemplar 3

Because the value of cosine can't be less than -1.

0 out of 1

award full marks

-1 mark for concept error $\left(\csc\theta \neq \frac{1}{\cos\theta}\right)$

sketch the graph of
$$y = |f(2x)| + 1$$
.

- 1 mark for absolute value
- 1 mark for horizontal compression
- 1 mark for vertical translation

3 marks

Exemplar 1

2 out of 3

award full marks

- 1 mark for concept error (wrong order)

Exemplar 2

2 out of 3

- + 1 mark for horizontal compression
- + 1 mark for vertical translation

1 mark

Solution

y = 1

This page was intentionally left blank.

sketch the graph of $h(x) = (f \cdot g)(x)$.

Solution

- 1 mark for operation of multiplication
- 1 mark for shape representing the given operation

Exemplar 1

11/2 out of 2

award full marks $-\frac{1}{2}$ mark for procedural error

Exemplar 2

1 out of 2

+ 1 mark for operation of multiplication

This page was intentionally left blank.

Appendices

MARKING GUIDELINES

Errors that are conceptually related to the learning outcomes associated with the question will result in a 1 mark deduction.

Each time a student makes one of the following errors, a 1/2 mark deduction will apply.

- arithmetic error
- procedural error
- terminology error in explanation
- lack of clarity in explanation
- incorrect shape of graph (only when marks are not allocated for shape)

Communication Errors

The following errors, which are not conceptually related to the learning outcomes associated with the question, may result in a ¹/₂ mark deduction and will be tracked on the *Answer/Scoring Sheet*.

E1 final answer	answer given as a complex fractionfinal answer not stated	
E2 equation/expression	changing an equation to an expression equating the two sides when proving an identity	
E3 variables	variable omitted in an equation or identity variables introduced without being defined	
E4 brackets	 "sin x²" written instead of "sin² x" missing brackets but still implied 	
E5 units	 missing units of measure incorrect units of measure answer stated in degrees instead of radians or vice versa 	
E6 rounding	rounding errorrounding too early	
E7 notation/transcription	notation errortranscription error	
E8 domain/range	 answer given outside the domain bracket error made when stating domain or range domain or range written in incorrect order 	
E9 graphing	 incorrect or missing endpoints or arrowheads scale values on axes not indicated coordinate points labelled incorrectly 	
E10 asymptotes	 asymptotes drawn as solid lines asymptotes missing but still implied graph crosses or curls away from asymptotes 	

IRREGULARITIES IN PROVINCIAL TESTS

A GUIDE FOR LOCAL MARKING

During the marking of provincial tests, irregularities are occasionally encountered in test booklets. The following list provides examples of irregularities for which an *Irregular Test Booklet Report* should be completed and sent to the department:

- completely different penmanship in the same test booklet
- incoherent work with correct answers
- notes from a teacher indicating how he or she has assisted a student during test administration
- student offering that he or she received assistance on a question from a teacher
- student submitting work on unauthorized paper
- evidence of cheating or plagiarism
- disturbing or offensive content
- no responses provided by the student (all "NR") or only incorrect responses ("0")

Student comments or responses indicating that the student may be at personal risk of being harmed or of harming others are personal safety issues. This type of student response requires an immediate and appropriate follow-up at the school level. In this case, please ensure the department is made aware that follow-up has taken place by completing an *Irregular Test Booklet Report*.

Except in the case of cheating or plagiarism where the result is a provincial test mark of 0%, it is the responsibility of the division or the school to determine how they will proceed with irregularities. Once an irregularity has been confirmed, the marker prepares an *Irregular Test Booklet Report* documenting the situation, the people contacted, and the follow-up. The original copy of this report is to be retained by the local jurisdiction and a copy is to be sent to the department along with the test materials.

Irregular Test Booklet Report

Test:
Date marked:
Booklet No.:
Problem(s) noted:
Ouestion(s) affected:
4
Action taken or rationale for assigning marks:

Follow-up:
Decision
Decision:
Marker's Signature:
Principal's Signature:
For Department Use Only—After Marking Complete
Consultant:
Date:

.		5			
Unit A: Transformations of Functions					
Question	Learning Outcome	Mark			
7	R2, R3	2			
9	R2, R5	2			
15	R3	1			
27	R1	1			
35	R6	2			
41 a)	R1	1			
41 b)	R2, R5	1			
43	R1, R4	3			
45	R1	2			
Unit B: Trigonometric Functions					
Question	Learning Outcome	Mark			
1	T1	2			
16	T1	1			
24	Т3	2			
26	T2	2			
33	T4	4			
37	T4	3			
42	Т3	1			
	Unit C: Binomial Theorem				
Question	Learning Outcome	Mark			
2 a)	P3	1			
2 b)	P3	2			
12	P1	1			
18	P4	1			
32	P4	2			
34	P2	3			
	Unit D: Polynomial Functions				
Question	Learning Outcome	Mark			
6	R12	1			
8	R11	1			
13	R11	2			
14	R12	1			
19	R12	1			
22	R12	3			

Table of Questions by Unit and Learning Outcome

Unit E: Trigonometric Equations and Identities				
Question	Learning Outcome	Mark		
3	T5	3		
5	T5	4		
10	T6	3		
11	T5	1		
17	T6	1		
20	T6	1		
30	Т6	2		
	Unit F: Exponents and Logarithms			
Question	Learning Outcome	Mark		
4	R10	4		
23	R7	1		
25	R7	1		
28	R9	3		
36	R8	3		
38	R8	3		
44	R9	1		
	Unit G: Radicals and Rationals			
Question	Learning Outcome	Mark		
21	R14	1		
29	R14	1		
31	R14	4		
39	R13	4		
40 a)	R13	1		
40 b)	R13	1		