Grade 12
Essential Mathematics
Achievement Test

Marking Guide

June 2014

## Manitoba Education and Advanced Learning Cataloguing in Publication Data

Grade 12 essential mathematics achievement test.
Marking Guide. June 2014 [electronic resource]
ISBN: 978-0-7711-5542-0

1. Educational tests and measurements-Manitoba.
2. Mathematical ability-Testing.
3. Mathematics-Examinations, questions, etc.
4. Mathematics-Study and teaching (Secondary)—Manitoba.
I. Manitoba. Manitoba Education and Advanced Learning.
510.76

## Manitoba Education and Advanced Learning

School Programs Division
Winnipeg, Manitoba, Canada
All exemplars found in this document are copyright protected and should not be extracted, accessed, or reproduced for any purpose other than for their intended educational use in this document. Sincere thanks to the students who allowed their original material to be used.

Permission is hereby given to reproduce this document for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Text Book Bureau. Order online at <www.mtbb.mb.ca>.

This resource will also be available on the Manitoba Education and Advanced Learning website at
<www.edu.gov.mb.ca/k12/assess/archives/index.html>.
Websites are subject to change without notice.

Disponible en français.
Available in alternate formats upon request.

## Contents

Marking Guidelines ..... ii
Irregularities in Provincial Tests ..... ii
Presentation of the Student Samples ..... 1
Home Finance ..... 2
Vehicle Finance ..... 14
Precision Measurement ..... 26
Probability ..... 36
Geometry and Trigonometry ..... 48
Statistics ..... 62
Appendix: Irregularities in Provincial Tests ..... 69
Irregular Test Booklet Report ..... 71

## Marking Guidelines

The Grade 12 Essential Mathematics Achievement Test: Marking Guide (June 2014) is based on Grades 9 to 12 Mathematics: Manitoba Curriculum Framework of Outcomes (2009).

Please make no marks in the student test booklets. If the booklets have marks in them, the marks need to be removed by departmental staff prior to sample marking should the booklet be selected.

The recommended procedure for scoring student responses is as follows:

1. Read the Marking Guide.
2. Study the student samples provided and the rationales for the allotted scores.
3. Determine the mark for the student's response by comparing its features with the Marking Guide descriptions. The descriptions and samples only typify a student's response to a given question; an exact match is not anticipated.

## Irregularities in Provincial Tests

During the administration of provincial tests, supervising teachers may encounter irregularities. Markers may also encounter irregularities during local marking sessions. The appendix provides examples of such irregularities as well as procedures to follow to report irregularities.

If a Scoring Sheet is marked with "0" and/or "NR" only (e.g., student was present but did not attempt any questions) please document this on the Irregular Test Booklet Report.

## Presentation of the Student Samples

Each constructed-response question is presented using the following sections:


Question 9
This section presents the test item as it appears in the student booklet, including how marks should be allotted.

Answer:

$$
\begin{array}{lll}
\text { Distance travelled: } & \begin{array}{l}
16519-15924 \\
\\
\\
\\
\\
\text { Fuel efficiency for } 100 \mathrm{~km}:
\end{array} & =\frac{73.2 \mathrm{~L}}{595 \mathrm{~km}} \times 100
\end{array} \quad \leftarrow 1 \mathrm{mark}
$$

Note to marker: " $L / 100 \mathrm{~km}$ " not required.


## Home Finance

A new homeowner has the following costs:

| Monthly heating cost | $\$ 150$ |
| :--- | ---: |
| Mortgage | $\$ 925$ |
| Land transfer tax | $\$ 250$ |
| Home insurance | $\$ 1000$ |
| Property tax adjustment | $\$ 200$ |
| Property tax | $\$ 1200$ |

Identify a one-time (or additional) cost from the above list.

## Answer:

Land transfer or property tax adjustment


Complete the following amortization table by filling in the empty boxes.

| Date | Payment | Interest | Principal | Unpaid Balance |
| :---: | :---: | :---: | :---: | :---: |
| April 15 | $\$ 789.00$ | $\$ 500.00$ | $\$ 289.00$ | $\$ 149711.00$ |
| May 15 | $\$ 789.00$ | $\$ 499.04$ |  | $\$ 149421.04$ |
| June 15 |  | $\$ 498.07$ | $\$ 290.93$ |  |
| July 15 | $\$ 789.00$ |  | $\$ 291.90$ | $\$ 148838.21$ |

Test Item and Marking Guide

## Answer:

| Date | Payment | Interest | Principal | Unpaid Balance |
| :---: | :---: | :---: | :---: | :---: |
| April 15 | $\$ 789.00$ | $\$ 500.00$ | $\$ 289.00$ | $\$ 149711.00$ |
| May 15 | $\$ 789.00$ | $\$ 499.04$ | $\$ 289.96$ | $\$ 149421.04$ |
| June 15 | $\$ 789.00$ | $\$ 498.07$ | $\$ 290.93$ | $\$ 149130.11$ |
| July 15 | $\$ 789.00$ | $\$ 497.10$ | $\$ 291.90$ | $\$ 148838.21$ |

(4 $\times 1$ mark)
Note to marker: Answers must be exact.

## Exemplar 1

| Date | Payment | Interest | Principal | Unpaid Balance |
| :---: | :---: | :---: | :---: | :---: |
| April 15 | $\$ 789.00$ | $\$ 500.00$ | $\$ 289.00$ | $\$ 149711.00$ |
| May 15 | $\$ 789.00$ | $\$ 499.04$ | 289.96 | $\$ 149421.04$ |
| June 15 | 789.00 | $\$ 498.07$ | $\$ 290.93$ | 149131.08 |
| July 15 | $\$ 789.00$ | 497.09 | $\$ 291.90$ | $\$ 148838.21$ |

Mark: 2 out of 4
Rationale: - Two correct answers (payment and principal) ( $2 \times 1$ mark)

- Incorrect answers (interest and unpaid balance)

The monthly heating payment for a home is $\$ 250$.
A) State the homeowner's heating costs for 5 years. (1 mark)

Answer:
$250 \times 12 \times 5$
$=\$ 15000 \quad \leftarrow 1$ mark
B) If the homeowner installs new windows, it will reduce the heating costs by $30 \%$. Calculate the homeowner's expected heating costs for 5 years if new windows are installed. (2 marks)

Answer:
$\$ 15000-\underbrace{(0.3)(\$ 15000)}_{1 \text { mark }}=\underbrace{\$ 10500}_{1 \text { mark }}$
OR
$\$ 15000 \times \underbrace{0.70}_{\text {l mark }}=\underbrace{\$ 10500}_{1 \text { mark }}$
C) The total cost for the windows is $\$ 12000$. Explain whether replacing the windows is a good financial decision. (1 mark)

Answer:
No, because the owner will spend an additional $\$ 7500$ over 5 years if new windows are installed.

OR
Yes, because installing new windows will increase the value of the home.
OR
No, the owner saves $\$ 4500$ but spends $\$ 12000$.

## Exemplar 1

A) $5 \times 12=60$
$250 \times 60=\$ 15000$
B) $250 \times .30=\$ 75 /$ month
$75 \times 60=\$ 4500$
C) I think it is a good decision because they would be paying $\$ 15000$ in 5 years with the older windows and with the new ones they would only pay $\$ 4500$ in 5 years. It's a better decision in the long run.

## Mark: 3 out of 4

Rationale: - Correct answer in Part A (1 mark)

- Correct calculation in Part B (savings) (1 mark)
- Correct response in Part C (follow-through error) (1 mark)


## Exemplar 2

A) $\$_{250 \times 5}=\$ 1250$
B) $1250 \times 0.30=375$
It will cost \$1250 over the next
1250-375 $=\$ 875$ it costs with new
$s$ years to heat his home. windows to heat his house over the next 5 years
C) It is not a good decision because he only sares * $_{375}$ dollars orer 5 years.
So spending \$/2000 dollars is a waste of time because he will hare to sare up that will take him a while.

## Mark: 3 out of 4

## Rationale: - Incorrect answer in Part A

- Correct solution in Part B (follow-through error) $(2 \times 1 \mathrm{mark})$
- Correct response in Part C (follow-through error) (1 mark)


## Exemplar 3

(4 Marks)
A) $\$ 250 \times 60=\$ 15000.00$
B) $\$ 250 \times .3=75$
$250-75=\$ 175$
$\$ 175 \times 60=\$ 10500.00$
The homeowners heating cost over a duration of 5 years will cost $\$ 15000.00$
With the windows installed, the heating cost over a duration of 5 years changes to $\$ 10500.00$. (saves \$4500)
C) $(\$ 12000.00-\$ 4500.00=\$ 7500)$
it does not seem like a good financial decision because you are ultimately spending more than you save. Although if you look at the $\$ 12000$ investment on a longer duration of time rather than the 5 years, then it will possibly be worth it. (you're saving more money over time)

## Mark: 4 out of 4

Rationale: - Correct answer in Part A (1 mark)

- Correct solution in Part B $(2 \times 1$ mark $)$
- Correct response in Part C (1 mark)

A couple has chosen a house to purchase. The bank calculates the couple's Gross Debt Service Ratio (GDSR) to be $40 \%$. State two ways the couple could decrease their GDSR.

## Sample answers:

- Get another job/earn more money.
- Negotiate a lower interest rate to decrease the mortgage payment.
- Lengthen the amortization period to decrease the mortgage payment.
- Increase the down payment to decrease the mortgage payment.
- Decrease the heating costs.
( $2 \times 1 \mathrm{mark}$ )


## Exemplar 1

The couple could decrease their GDSR by cutting down their mortgage payments that are monthly or how much they want to pay on property tax.

## Mark: 1 out of 2

Rationale: - One correct response (mortgage payment) (1 mark)

## Exemplar 2

(2 Marks)

They could save up more money for a down payment, or look for a different house that doesn't cost as much.

Mark: 1 out of 2
Rationale: - One correct response (down payment) (1 mark)

Exemplar 3
(2 Marks)

They could try and lower the heating cost and could make more money.

Mark: 2 out of 2
Rationale: - Two correct responses ( $2 \times 1$ mark)

Homeowners pay a Land Transfer Tax when purchasing a property. This tax is calculated as follows:

| Value of Property | Rate |
| :---: | :---: |
| On the first $\$ 30000$ | $0 \%$ |
| On the next $\$ 60000$ <br> (i.e., $\$ 30001$ to $\$ 90000$ ) | $0.5 \%$ |
| On the next $\$ 60000$ <br> (i.e., $\$ 90$ 001 to $\$ 150000$ ) | $1.0 \%$ |
| On the next $\$ 50000$ <br> (i.e., $\$ 150 ~ 001 ~ t o ~$ <br> 200 <br> $000)$ | $1.5 \%$ |
| On amounts in excess of $\$ 200000$ | $2.0 \%$ |

Calculate the Land Transfer Tax due on a property valued at $\$ 90000$.

## Answer:

First $\$ 30000: \quad$ no tax or $\$ 0 \quad \leftarrow 1$ mark
Next $\$ 60$ 000: $\quad \$ 60000 \times 0.005$

$$
=\$ 300 \quad \leftarrow 1 \text { mark }
$$

OR
Taxable amount: $\quad \$ 90000-\$ 30000$

$$
=\$ 60000 \quad \leftarrow 1 \text { mark }
$$

Tax payable: $\quad \$ 60000 \times 0.005$

$$
=\$ 300 \quad \leftarrow 1 \text { mark }
$$

## Exemplar 1

$$
90000 \times 0.005=450
$$

Mark: 1 out of 2
Rationale: - Incorrect taxable amount

- Correct solution (follow-through error) (1 mark)

Exemplar $2 \quad$ (2 Marks)

$$
\$ 300
$$

Mark: 1 out of 2
Rationale: - Correct tax payable (1 mark)

## Exemplar 3

NEXT

$$
3300
$$

Mark: 2 out of 2
Rationale: - Correct solution ( $2 \times 1$ mark)

State two benefits of owning a house and two benefits of renting a property assuming the monthly payments are the same.

| Benefit of owning a house |  | Benefit of renting a property |
| :--- | :--- | :--- |
| 1. | 1. |  |
| 2. | 2. |  |

## Sample answers:

| Benefit of owning a house | Benefit of renting a property |
| :--- | :--- |
| - equity | - no maintenance costs |
| $-\quad$ landlord approval not required |  |
| for renovations |  |
| - acts as an investment (asset) | - lower insurance cost |

(4 $\times 1$ mark)

## Exemplar 1

(4 Marks)

| Benefit of owning a house | Benefit of renting a property |
| :---: | :---: |
| - house brlongs to you | - you don't insure the |
| - building |  |
| want to renovate how you | - cheaper |

Mark: 2 out of 4
Rationale: - One correct benefit of owning (renovate) (1 mark)

- One correct benefit of renting (insure) (1 mark)


## Exemplar 2

(4 Marks)

| Benefit of owning a house | Benefit of renting a property |
| :---: | :---: |
| - you can have pets | - no yard work |
| - you can smoke in your |  |
| own house |  |$\quad$| - owner pays for anything |
| :--- |
| that goes wrong |

Mark: 4 out of 4
Rationale: - Two correct benefits of owning ( $2 \times 1$ mark)

- Two correct benefits of renting ( $2 \times 1$ mark)


## Exemplar 3

| Benefit of owning a house | Benefit of renting a property |
| :---: | :---: |
| - it is your own and you can make | - utilities are included in rent |
| as many changes as you like | - no maintenance costs |
| - money spent actually goes |  |
| towards owning that house versus |  |
| just going to rent |  |

Mark: 4 out of 4
Rationale: - Two correct benefits of owning ( $2 \times 1$ mark)

- Two correct benefits of renting ( $2 \times 1$ mark)


## Vehicle Finance

John wants to lease a vehicle for 3 years. The monthly lease payment is $\$ 650$. A down payment of $\$ 5000$ is required. All taxes are included in the payments.
A) Calculate the total cost of the lease. (2 marks)

Answer:
$\$ 650 \times 36$
$=\$ 23400$
$\leftarrow 1$ mark
$\$ 23400+\$ 5000$
$=\$ 28400 \leftarrow 1$ mark
B) John decides to purchase the vehicle at the end of the lease. The initial value of the vehicle was $\$ 45000$ including taxes. Its residual value after 3 years is $45 \%$. Calculate the total amount he will pay for the vehicle. (2 marks)

Answer:
Residual value: $\quad \$ 45000 \times 0.45$

$$
=\$ 20250 \quad \leftarrow 1 \text { mark }
$$

Total amount: $\quad \$ 28400+\$ 20250$

$$
=\$ 48650 \quad \leftarrow 1 \text { mark }
$$

## Exemplar 1

A) $\quad 650 \times 1.12=\$ 734.50$

$$
36 \times 734.50+5000=\$ 31442
$$

B) $\quad \$ 45000 \times 0.45=\$ 20250 \times 1.13=\$ 22882.50$
$\$ 22882.50+\$ 31442=\$ 54324.50$

Mark: 2 out of 4
Rationale: - Incorrect lease payment in Part A

- Correct solution in Part A (follow-through error) (1 mark)
- Incorrect calculation in Part B (residual value)
- Correct solution in Part B (follow-through error) (1 mark)


## Exemplar 2

A) $\begin{array}{r}3 \\ \times 12 \\ \hline 36\end{array} \begin{array}{r}650 \\ \hline \$ 23400\end{array}+\begin{array}{r}\$ 00 \\ +\quad 5000 \\ \hline \$ 2800\end{array}$
B) $\$ 45000 \quad 45000$
$\times 45 \%$
$\$ 20250$$\frac{-20250}{\$ 24750}$
Mark: 3 out of 4
Rationale: - Correct solution in Part A ( $2 \times 1$ mark)

- Correct calculation in Part B (residual value) (1 mark)


## Exemplar 3

(4 Marks)
A) $(1.13)(\$ 650)=\$ 734.50 \leftarrow$ after tax
tax
$\begin{aligned} \text { cost of lease }= & (5000)+(3 \text { yrs })(734.50)=\underline{\$ 7203.50} \\ & \text { Down pay }\end{aligned}$
B $\quad(0.45)(45000)=\$ 20250$

$$
\begin{array}{r}
7203.50 \\
+20250 \\
\hline \$ 27453.50 \\
\\
\hline \text { after } 3 \text { years }
\end{array}
$$

## Mark: 3 out of 4

Rationale: - Incorrect lease payment in Part A

- Correct solution in Part A (follow-through error) (1 mark)
- Correct solution in Part B (follow-through error) $(2 \times 1$ mark $)$

Describe one benefit of buying a new vehicle and one benefit of buying a used vehicle.

| Benefit of buying a new vehicle | Benefit of buying a used vehicle |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## Sample answers:

| Benefit of buying a new vehicle | Benefit of buying a used vehicle |
| :--- | :--- |
| - better warranty | - cheaper insurance |
| - choice of options |  |
| -newer technology (safety, <br> Bluetooth, backup cameras) | - no GST (private sale) |

1 mark for each correct response ( $2 \times 1$ mark)

## Exemplar 1

| Benefit of buying a new vehicle | Benefit of buying a used vehicle |
| :---: | :---: |
| - no surprises | - you don't have to pay |
| taxes when you buy it |  |
|  | - cheaper |
|  |  |

Mark: 0 out of 2
Rationale: - Incorrect responses

## Exemplar 2

(2 Marks)

| Benefit of buying a new vehicle | Benefit of buying a used vehicle |
| :---: | :---: |
| - new car smell | - cheaper than new because <br> ofdepreciation |
|  |  |

Mark: 1 out of 2
Rationale: - One correct response for buying used (1 mark)

## Exemplar 3

| Benefit of buying a new vehicle | Benefit of buying a used vehicle |
| :---: | :---: |
| - You're the first owner so you |  |
| don't need to worry or care about |  |
| previous wear on the vehicle. | Your insurance on your vehicle will <br> be cheaper due to the year, model <br> and make. |

## Mark: 2 out of 2

Rationale: - Two correct responses ( $2 \times 1$ mark)

The odometer reads 15924 km before Seth leaves for a trip. After using 73.2 L of fuel, the odometer reads 16519 km . Determine the fuel efficiency of his vehicle in L/100 km.

## Answer:

Distance travelled: $\quad 16519-15924$

$$
=595 \mathrm{~km} \quad \leftarrow 1 \text { mark }
$$

Fuel efficiency for $100 \mathrm{~km}:=\frac{73.2 \mathrm{~L}}{595 \mathrm{~km}} \times 100$

$$
=12.3(L / 100 \mathrm{~km}) \quad \leftarrow 1 \mathrm{mark}
$$

Note to marker: "L/100 km" not required.

## Exemplar 1

$$
\begin{gathered}
16519 \\
\frac{15924}{595 \mathrm{~km}} \\
\frac{595 \mathrm{Km}}{73.21}=8.13 \mathrm{~L} / 100 \mathrm{~km}
\end{gathered}
$$

Mark: 1 out of 2
Rationale: - Correct distance travelled (1 mark)

## Exemplar 2

$$
\begin{aligned}
& 16519-15924 \\
& \frac{73.2 \times 595}{1000}=43.55 \mathrm{FE}
\end{aligned}
$$

Mark: 1 out of 2
Rationale: - Correct distance travelled (1 mark)

## Exemplar 3

$$
\begin{array}{r}
16519 \\
-\quad 15924 \\
577 \mathrm{~km} \\
F E=\frac{73.2 \times 100}{577} \\
F E=12.7 \mathrm{~K} / 100 \mathrm{~km}
\end{array}
$$

Mark: 1 out of 2
Rationale: - Incorrect distance travelled

- Correct solution (follow-through error) (1 mark)

Brian bought a car valued at $\$ 28600$. It depreciates at $20 \%$ per year. Complete the table to find the value of the vehicle after 2 years.

| Year | Vehicle Value | Depreciation Amount | Year-end Value of Vehicle |
| :---: | :---: | :---: | :---: |
| 1 | $\$ 28600$ |  |  |
| 2 |  |  |  |
|  |  |  |  |

Answer:

| Year | Vehicle Value | Depreciation Amount | Year-end Value of Vehicle |
| :---: | :---: | :---: | :---: |
| 1 | $\$ 28600$ | $\$ 28600 \times 0.2=\underbrace{\$ 5720}_{1 \text { mark }}$ | $\$ 28600-\$ 5720=\underbrace{\$ 22880}_{1 \text { mark }}$ |
| 2 | $\$ 22880$ | $\$ 22880 \times 0.2=\underbrace{\$ 4576}_{1 \text { mark }}$ | $\$ 22880-\$ 4576=\underbrace{\$ 18304}_{1 \text { mark }}$ |

(4 $\times 1$ mark)

## Exemplar 1

| Year | Vehicle Value | Depreciation Amount | Year-end Value of Vehicle |
| :---: | :---: | :---: | :---: |
| 1 | $\$ 28600$ | $\$ 57.20$ | $\$ 28542.80$ |
| 2 | 28542.80 | $\$ 57.08$ | $\$ 28485.72$ |

Mark: 2 out of 4
Rationale: - Incorrect calculations (depreciation)

- Two correct answers (follow-through error) ( $2 \times 1$ mark)


## Exemplar 2

| Year | Vehicle Value | Depreciation Amount | Year-end Value of Vehicle |
| :---: | :---: | :---: | :---: |
| 1 | $\$ 28600$ | $28600 \times 0.20$ <br> $=\$ 5720$ | $28600+5720$ <br> $=\$ 34320$ |
| 2 | $\$ 34320$ | $34320 \times 0.20$ <br> $=\$ 6864$ | $34320+6864$ <br> $=\$ 41184$ |

Mark: 2 out of 4
Rationale: - One correct answer (year 1 depreciation) (1 mark)

- One correct answer (year 2 depreciation) (follow-through error) (1 mark)


## Exemplar 3

| Year | Vehicle Value | Depreciation Amount | Year-end Value of Vehicle |
| :---: | :---: | :---: | :---: |
| 1 | $\$ 28600$ | $28600-5720$ | 22880 |
| 2 | 22880 | $28880-4576$ | 18304 |

Mark: 2 out of 4
Rationale: - Two correct answers (year-end values) ( $2 \times 1$ mark)

## Question 11

Joe borrows $\$ 16750$ at $7 \%$ over 5 years to purchase a car.
A) Calculate his monthly payment. (2 marks)

> Answer:
> $\frac{16750}{1000} \times \underbrace{19.80}_{1 \text { mark }}=\underbrace{\$ 331.65}_{1 \text { mark }}$

Note to marker: Award 1 mark if the correct table value is indicated.
B) State the amount of interest paid in the first month. (1 mark)

## Answer:

$16750 \times 0.07 \times \frac{1}{12}$
$=\$ 97.71 \leftarrow 1$ mark

Note to marker: Allow for various roundings.

## Exemplar 1

A) $16750 \times 0.07 \times 5=5862.50$
$58652.50 \div 12=\$ 488.54$
B)

Mark: 0 out of 3
Rationale: - Incorrect solution in Part A

- Incorrect answer in Part B

Exemplar 2
(3 Marks)
A) $19,80 \times 12 \times 5=\$ 1188$
B) $1188 \times 0.07=\$ 83.16$

Mark: 1 out of 3
Rationale: - Correct table value in Part A (1 mark)

- Incorrect answer in Part B


## Exemplar 3

A) $\frac{16750}{1000} \times 19.80=\$ 331.65$
B) $16750 \times .07 \times 5=\$ 5862.50$ $5862.5 \div 5 \div 12=\$ 97.71$

Mark: 3 out of 3
Rationale: - Correct solution in Part A ( $2 \times 1$ mark)

- Correct answer in Part B (1 mark)


## Question 12

Choose the letter that best completes the statement below.
When insuring a vehicle in Manitoba, the factor that affects your premium is:
a) your education
b) where you live
c) your gender
d) the insurance agent you purchase from
e) your age

Answer: $\qquad$ b)


## Precision Measurement

State a measurement situation where a degree of precision would be required. Justify your answer.

## Sample answers:

- A clock would require a precision of 1 minute, so that people can know the time/be on time.
- A thermometer used to determine body temperature would require a precision of $0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$, to know whether medical treatment is necessary.

Test Item and Marking Guide

- A weigh scale at the post office would require a precision of 0.1 kg , because mailing costs are determined by weight.


## Exemplar 1

When constructing a wheelchair ramp. If it is too high, someone in a wheel chair could fall over, it if's too low it might not reach the door.

Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 2

Building a house, putting a window in, it has to fit tight but can have a little bit of tolerance on each side.

Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 3

When your measuring if your rable will fir in the space provided.


Mark: 0 out of 2
Rationale: - Incorrect response

Dave wants to install three new cupboards in his bathroom. Each cupboard is 40 cm wide. He measured the space to be 120 cm wide. Explain why the cupboards may not fit using one of the following concepts: accuracy, tolerance, or uncertainty.

## Sample answers:

## Accuracy

A measuring tape used to measure cupboards (or space) may not be accurate. $A$ reading of 40 cm on the tape may actually be 41 cm and so even though the cupboards were precisely measured, it would not fit in 120 cm of space (cupboards would need 123 cm ).

## OR

## Tolerance

Cupboard specifications may have been $40 \mathrm{~cm} \pm 1 \mathrm{~cm}$. The three cupboards may meet the specifications but the sum could be more than 120 cm and not fit in the space.

## OR

## Uncertainty

A measuring tape whose smallest unit of precision is 1 cm would have an uncertainty of 0.5 cm . Consequently, if the cupboards were accurately measured to 40 cm , the uncertainty could add another 0.5 cm to each cupboard and the three cupboards would not fit in the space.

## Exemplar 1

$40 \times 3=120$

They may not fit by 5 mm because the precision we have is in cm so the cupboards may be 5 mm too big on too small.

Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 2

(2 Marks)
$40 \times 3=120$

They may not fit because it would be too close of a fit and it might not be as accurate as you.

Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 3

The cupboards may not fit because of the uncertainty of measuring devices. Measuring devices can't get the points in between their lines and if the cupboard lies in between then something will be urong.

## Mark: 2 out of 2

Rationale: - Correct response (2 marks)

A manufacturer creates ball bearings with diameters that have nominal values of 5 cm and tolerances of 0.02 cm . State the minimum and maximum diameter of a ball bearing if the nominal value is the midpoint of the tolerance range.

Minimum: $\qquad$

Maximum: $\qquad$

Answer:
Minimum: $\qquad$ $\leftarrow 1$ mark

Maximum: $\qquad$ $\leftarrow 1$ mark

Note to marker: "cm" not required.

## Exemplar 1

Minimum: - 0.02


Maximum: +0.02

$$
020-10
$$

$\qquad$

Mark: 0 out of 2
Rationale: - Incorrect answers

## Exemplar 2

Minimum: $\qquad$

Maximum: $\qquad$

Mark: 1 out of 2
Rationale: - Incorrect answer (minimum)

- Correct answer (maximum) (follow-through error) (1 mark)

Exemplar 3
(2 Marks)

Minimum: 5-0.01cm

Maximum: $5+0.01 \mathrm{~cm}$

## Mark: 2 out of 2

Rationale: - Two correct answers ( $2 \times 1$ mark)

Given the following diagram of a measuring device:


State the precision and uncertainty of the measuring device:

Precision: $\qquad$

Uncertainty: $\qquad$

Answer:
Precision: $\qquad$ $\leftarrow 1$ mark

Uncertainty: $\qquad$ $\leftarrow 1$ mark

Note to marker: "cm" not required.

## Exemplar 1

Precision: $\qquad$

Uncertainty: $\quad 5 \mathrm{~mm}$

Mark: 0 out of 2
Rationale: - Incorrect answers

## Exemplar 2

(2 Marks)

Precision: $\qquad$

Uncertainty: anything in between

## Mark: 0 out of 2

Rationale: - Incorrect answers

## Exemplar 3

Precision: $\qquad$

Uncertainty: $\qquad$

Mark: 1 out of 2
Rationale: - Incorrect answer (precision)

- Correct answer (uncertainty) (follow-through error) (1 mark)

Tolerance is often used in construction, commercial, industrial, or artistic applications.

Demonstrate one use of tolerance in the real world by performing the following two steps:

- State a specific example where tolerance is used.
- Support your example with a written explanation of how tolerance is used.


## Answer:

2 marks for example with support

## Exemplar 1

Tolerance could be used if you were putting a statue in a display case in a museum. If the display was 6 ft tall and so was the statue, you'd want to either make the display 6.02 feet tall or the statue 5.98 feet tall so that it would for sure fit into the display.

Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 2

(2 Marks)

Tolerance is used when rrying to set the oven remperature for baking. The recipe says you need $305^{\circ} \mathrm{F}$ bur some ovens are different and might be a litte bir off. like $+1-5^{\circ} \mathrm{F}$ so it could be $300^{\circ} \mathrm{F}$ or $310^{\circ} \mathrm{F}$ which should be fine. But 100 much of a rolerance for baking isn'r good and the food won't rurn our good.

Mark: 2 out of 2
Rationale: - Correct response (2 marks)

## Exemplar 3

Tolerance is used in many places in everyday lives, best example would be in the construction of shelves.
ex. you have to make an exact cut to 40 cm , the tolerance is $\pm 1 \mathrm{~cm}$

```
maximum: }41\textrm{cm
    Tolerance }=2\textrm{cm
minimum: }39\textrm{cm
```


## Mark: 2 out of 2

Rationale: - Correct response (2 marks)

## Probability

The first day of the month falls on a Sunday 48 times in 28 years.
A) State the probability of the first day of any given month falling on a Sunday. (1 mark)

Answer:
$28 \times 12=336$ months
$\frac{48}{336}$ or $\frac{1}{7}$ or $1: 7$ or 0.143 or one out of seven $\leftarrow 1$ mark
B) State the odds in favour of this happening. (1 mark)

Answer:
$336-48=288$

48:288 or 1:6 or one to six $\leftarrow 1$ mark

Note to marker: Accept reduced ratios.

## Exemplar 1

A) $28 \times 12 \mathrm{~m}=336$ months
$48 \div 336=0.14$
B) $48: 336$

Mark: 1 out of 2
Rationale: - Correct answer in Part A (1 mark)

- Incorrect answer in Part B


## Exemplar 2

A) $\frac{48}{288}$
B) $48: 240$

Mark: 1 out of 2
Rationale: - Incorrect answer in Part A

- Correct answer in Part B (follow-through error) (1 mark)


## Exemplar 3

A) $28 \times 12=336$

48/336
$336-336,160,112,84,56,28,24,14,7$
48 -
$2 / 14$
B) $48: 288$
or
$2: 12$
Mark: 2 out of 2
Rationale: - Correct answer in Part A (1 mark)

- Correct answer in Part B (1 mark)


## Question 19

The probability of an eagle returning to the same nest year after year is $\frac{7}{8}$.
A) State this probability as a decimal. (1 mark)

Answer:
0.875

Test Item and Marking Guide
B) State the probability of the eagle not returning to the same nest. (1 mark)

Answer:
$\frac{1}{8}$ or 0.125 or $12.5 \%$ or $1: 8$ or 1 in 8

## Exemplar 1

A) 0.75
B) $2 / 8$

## Mark: 1 out of 2

Rationale: - Incorrect answer in Part A

- Correct answer in Part B (follow-through error) (1 mark)


## Exemplar 2

A) $\quad P(E A G L E)=\frac{7}{8}=0.875$
B) $\quad P($ eagles not retutning to the same nest $)=\frac{1}{8}=0.125$

$$
=12.5 \%
$$

$P($ eagles not retutning to the same nest $)=\frac{0}{8}=\underline{0 \%}$
Mark: 1 out of 2
Rationale: - Correct answer in Part A (1 mark)

- Incorrect answer in Part B

Exemplar 3
A) 0.88
B) 0.12

Mark: 2 out of 2
Rationale: - Correct answer in Part A (1 mark)

- Correct answer in Part B (1 mark)

The Cook Construction Company is bidding on a $\$ 200000$ contract to apply gravel on the roads in the Rural Municipality of Timber Valley. It costs the company $\$ 5250$ to draft the bid. This company has a $10 \%$ chance of winning the contract.

Calculate the expected value of the Cook Construction Company's bid.

Answer:
$\$$ gain $=\$ 200000-\$ 5250=\$ 194750$
$E V=P($ win $) \times \$$ gain $-P($ lose $) \times \$$ loss
Test Item and Marking Guide
$E V=\frac{1}{10}(\$ 194750)-\frac{9}{10}(\$ 5250) \leftarrow 1$ mark for correct substitutions
$=\$ 19475-\$ 4725$
$=\$ 14750 \quad \leftarrow 1$ mark
OR
Average winnings: $\$ 200000 \times 0.10$
$=\$ 20000 \quad \leftarrow 1$ mark

Expected value: $\quad \$ 20000-\$ 5250$

$$
=\$ 14750 \quad \leftarrow 1 \text { mark }
$$

## Exemplar 1

$\$ 200,000$
-5250
$=\$ 194750$

Mark: 1 out of 2
Rationale: - Incorrect calculation (average winnings)

- Correct solution (follow-through error) (1 mark)


## Exemplar 2

$$
\begin{gathered}
E V=P W\left(W_{\text {in }}\right)-\text { bet } \\
\$ 194750=0.10(200000)-5250
\end{gathered}
$$

Mark: 1 out of 2
Rationale: - Correct calculation (average winnings) (1 mark)

## Exemplar 3

$$
\begin{gathered}
E V=(0.1)(200000)-5250 \\
E V=14750
\end{gathered}
$$

Mark: 2 out of 2
Rationale: - Correct solution ( $2 \times 1$ mark)

## Question 21

Choose the letter that best completes the statement below.
Probability compares the number of favourable outcomes to
a) the likelihood of it not occurring
b) the total number of outcomes
c) the number of unfavourable outcomes
d) the likelihood of it occurring

Answer:
b)
$\qquad$


The odds against hitting a moose on the highway are $193: 7$. State the probability of hitting a moose.

```
Answer:
\frac{7}{200}\mathrm{ or 0.035 or 3.5% or 7:200 or seven out of 200}
```


## Exemplar 1

$$
\frac{193}{7}=\frac{7}{193}=0.036
$$

Mark: 0 out of 1
Rationale: - Incorrect answer

$$
\frac{7}{193+7}=\frac{7}{200} \text { or } 0.035 \text { or } 10.5 \%
$$

Mark: 0 out of 1
Rationale: - Incorrect answer

## Exemplar 3

## Mark: 1 out of 1

Rationale: - Correct answer (1 mark)

Eagle Motors has determined that the theoretical probability of a vehicle breaking down is 0.001 . In a sample of 5000 vehicles, 100 have broken down.
A) State the experimental probability of an Eagle Motors vehicle breaking down. (1 mark)

Answer:
$\frac{100}{5000}$ or 0.02 or $2 \%$ or $100: 5000$ or 100 out of 5000

Note to marker: Accept reduced answers.
B) State the number of vehicles, from the 5000 sampled, that can be expected to break down based on the theoretical probability. (1 mark)

Answer:
$5000 \times 0.001$
$=5$
$\leftarrow 1$ mark

## Exemplar 1

A) $\frac{100}{5000}=0.02 \%$


Mark: 0 out of 2
Rationale: - Incorrect answer in Part A

- Incorrect answer in Part B


## Exemplar 2

A)

$$
\begin{aligned}
& 5000: 100 \\
& 5: 1
\end{aligned}
$$

B) Every, in 5 cars would break down

Mark: 0 out of 2
Rationale: - Incorrect answer in Part A

- Incorrect answer in Part B


## Exemplar 3

A) $100 / 5000$
B) $5 / 5000$

Mark: 1 out of 2
Rationale: - Correct answer in Part A (1 mark)

- Incorrect answer in Part B


## Geometry and Trigonometry

## Question 24

A triangle has sides of $12 \mathrm{~cm}, 14 \mathrm{~cm}$, and 16 cm . Justify whether the triangle has two congruent angles.

## Answer:

No, in order to have two congruent angles, two side lengths must be the same.

## Exemplar 1



There are no congruent lines because all measurements are different
Mark: 0 out of 2
Rationale: - Incorrect response

## Exemplar 2



No, because it's a scalene triangle and all sideslangles are different.
Mark: 2 out of 2
Rationale: - Correct response (2 marks)

## Exemplar 3



$$
\begin{aligned}
& \frac{14^{2}+16^{2}-12^{2}}{2(14)(16)} \frac{308}{448}=46.6 \\
& \frac{12^{2}+16^{2}-14^{2}}{2(12)(16)} \frac{204}{384}=57.9
\end{aligned}
$$

No it does not have 2 congruent angles.

Mark: 2 out of 2
Rationale: - Correct response (2 marks)

Johnny needs a wedge that will raise his bookshelf at least 4 inches.

A) Calculate the length of the third side of the wedge. (2 marks)

Answer:
$c^{2}=a^{2}+b^{2}-2 a b \cos \theta$
$c^{2}=12^{2}+12^{2}-2(12)(12) \cos 40^{\circ} \leftarrow 1$ mark for correct substitution
$c^{2}=144+144-220.6$
$c^{2}=67.4$
$c=\sqrt{67.4}$
$c=8.2$ (inches) $\leftarrow 1$ mark
B) Explain whether the wedge shown above will work for Johnny. (1 mark)

Answer:
It will work because the height is more than 4 inches.
Note to marker: Various solutions exist, including those using Sine Law or right-angled trigonometry. Allow for various roundings.

## Exemplar 1

A) $\quad(12) \sin 40=x$
$X=7.7 \mathrm{in}$
B) It will work because he needs to raise his shelf at least 4 inches, and THE WEDGE WILL ONLY RAISE IT 7.7 inches.

Mark: 1 out of 3
Rationale: - Incorrect solution in Part A

- Correct response in Part B (follow-through error) (1 mark)

Exemplar 2
(3 Marks)
A) 8.2 inches
B) The wedge will work because it is more than 4 inches.

## Mark: 2 out of 3

Rationale: - Correct answer in Part A (1 mark)

- Correct response in Part B (1 mark)

Exemplar 3
A) $\quad a^{2}=b^{2}+c^{2}-2 b c(\cos A)$
$a^{2}=12^{2}+12^{2}-2(12)(12)\left(\cos 40^{\circ}\right)$
$=288-220.6$
$a^{2}=\sqrt{67.4}=8.2$
B) $\quad \mathrm{No}$

Mark: 2 out of 3
Rationale: - Correct solution in Part A ( $2 \times 1$ mark)

- Incorrect response in Part B

The Cosine Law is often used in construction, commercial, industrial, or artistic applications.
A) Demonstrate one use of the Cosine Law in the real world by performing the following two steps: (2 marks)

- State a specific example where Cosine Law is used.
- Support your example with a written explanation of how Cosine Law is used.


## Answer:

2 marks for example with support
B) Sketch a reasonably neat picture or diagram (not necessarily to scale) that supports your example in Part A. (1 mark)

Answer:
1 mark for sketch

## Exemplar 1

A) 1) When you need to figure out another side or angle of what
it is you're making.
2) When building a shed, deck
or house, you may need to
know a side or the angle of it.
B)


Mark: 0 out of 3
Rationale: - Incorrect response in Part A

- Incorrect sketch in Part B


## Exemplar 2

## A) Building Bridges

Determining the angles of how they need to be built.
B)


Mark: 1 out of 3
Rationale: - Incorrect response in Part A

- Correct sketch in Part B (1 mark)


## Exemplar 3

A) In the construction of a roof, because a roof does not have a $90^{\circ}$ angle you are unable to use SOHCAHTOA, therefore to be accurate on your sides and angles to be precise and prevent unnecessary matter from leaking in you will need to use the cosine law.
B)


Mark: 2 out of 3
Rationale: - Correct response in Part A (2 marks)

- Incorrect sketch in Part B


## Question 27

Choose the letter that best completes the statement below.
If all sides of a 4-sided polygon are equal, then:
a) The adjacent angles are equal.
b) The quadrilateral is a square.
c) The diagonals intersect at $90^{\circ}$.
d) The diagonals do not bisect the interior angles of the quadrilateral.

Answer: $\qquad$ c)


## Question 28

A regular hexagon has a side length of 10 metres.
A) State the measure of angle A, the central angle, in degrees. (1 mark)


Test Item and Marking Guide
Answer:
$\frac{360^{\circ}}{6}$
$=60^{\circ}$
$\leftarrow 1$ mark
Note to marker: Degrees not required.
B) State the measure of the given diagonal in metres. (1 mark)


Answer:
$=10+10$
$=20(\mathrm{~m}) \quad \leftarrow 1$ mark
Note to marker: " $m$ " not required.

## Exemplar 1

A) $180(n-2) \quad(360 \div n)$ 180(10-2)
$180(8)=$
1440
B) 30 m

Mark: 0 out of 2
Rationale: - Incorrect answer in Part A

- Incorrect answer in Part B

Exemplar 2
(2 Marks)
A) $C=\frac{360^{\circ}}{5}=72^{\circ}$
B)


Mark: 1 out of 2
Rationale: - Incorrect answer in Part A

- Correct answer in Part B (follow-through error) (1 mark)


## Exemplar 3

A) $\quad C=\frac{6}{360^{\circ}}=0.02^{\circ}$
B) $10+10=20$

[^0]Polygons are often used in construction, commercial, industrial, or artistic applications.
A) Demonstrate one use of the various properties of polygons in the real world by performing the following two steps: ( 2 marks)

- State a specific example where the various properties of polygons are used.
- Support your example with a written explanation of how the various properties of polygons are used.


## Answer:

2 marks for example with support
B) Sketch a reasonably neat picture or diagram (not necessarily to scale) that supports your example in Part A. (1 mark)

Answer:
1 mark for sketch

## Exemplar 1

A) ex.) Sum of interior angles $=180^{\circ}(n-2)$

A number of sides, central angle of polygons
ex.) equilateral - all sides and angles are equal
scalene - two sides and angles are different
isosceles - two sides and angles are equal
B)


## Mark: 0 out of 3

Rationale: - Incorrect response in Part A

- Incorrect sketch in Part B


## Exemplar 2

A) Laying hexagonal stone outside in a yard, they all must have equal sides in order to fit properly.
B)


Mark: 3 out of 3
Rationale: - Correct response in Part A (2 marks)

- Correct sketch in Part B (1 mark)


## Exemplar 3

A) Various properties of polygons are used in building walls.

The properties of polygons are used in building walls because they have equal sides or angles and fit together nicely.
B)


Rectangles
in walls

Mark: 3 out of 3
Rationale: - Correct response in Part A (2 marks)

- Correct sketch in Part B (1 mark)

Given the following regular polygon:

A) Calculate the sum of the interior angles in the polygon. (2 marks)

Test Item and Marking Guide
Answer:
$S=180^{\circ}(n-2)$
$S=180^{\circ}(8-2) \leftarrow 1$ mark for correct substitution
$S=180^{\circ}(6)$
$S=1080^{\circ} \quad \leftarrow 1$ mark
Note to marker: Degrees not required.
B) State the measure of each interior angle in the polygon. (1 mark)

Answer:
$1080 \div 8$
$=135^{\circ}$
$\leftarrow 1$ mark
Note to marker: Degrees not required.

## Exemplar 1

A) $c=\frac{360}{8}=45$
B) $\quad 7=180^{\circ}(8-2)=1080$

Mark: 0 out of 3
Rationale: - Incorrect solution in Part A

- Incorrect answer in Part B


## Exemplar 2

A) $180 \times \frac{(8-2)}{8}=135^{\circ}$
B) $135 \div 8=16.9^{\circ}$

Mark: 1 out of 3
Rationale: - Incorrect solution in Part A

- Correct answer in Part B (follow-through error) (1 mark)

Exemplar 3
A) $135^{\circ} \times 8=1080^{\circ}$
B) $\quad \begin{aligned} 180^{\circ} \div 8 & =22.5^{\circ} \\ & \approx 23^{\circ}\end{aligned}$

Mark: 1 out of 3
Rationale: - Correct answer in Part A (1 mark)

- Incorrect answer in Part B


## Statistics

The scores for a unit test in mathematics are listed below.

| 30 | 45 | 45 | 55 | 65 | 70 | 70 | 70 | 75 | 80 | 95 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A) State the median: (1 mark)

Answer:
Median: $\qquad$
Test Item and Marking Guide
B) The teacher decides not to count the lowest mark. State whether each of the following will increase, decrease, or have no change. (3 marks)

Answer:
Mode: no change $\leftarrow 1$ mark
Median: no change $\leftarrow 1$ mark
Mean: $\qquad$ $\leftarrow 1$ mark

## Exemplar 1

A) Median: $\quad 70$
B) Mode: $\qquad$
Median: $\qquad$

Mean: $\qquad$
Mark: 2 out of 4
Rationale: - Correct answer in Part A (1 mark)

- One correct response in Part B (median) (1 mark)


## Exemplar 2

(4 Marks)
A) Median: 70
B) Mode: $\qquad$
Median: increase
Mean: $\qquad$
Mark: 2 out of 4
Rationale: - Correct answer in Part A (1 mark)

- One correct answer in Part B (mean) (1 mark)


## Exemplar 3

(4 Marks)
A) Median: $\qquad$ $\frac{\frac{\text { Mean }}{45+45+55+65+70+70+70+75+80+95}}{10}$ Median: no change

Mean: $\qquad$
The mean is the only number that would be affected by the lowest mark.

## Mark: 3 out of 4

Rationale: - Correct answer in Part A (1 mark)

- Two correct answers in Part B (mode, median) $(2 \times 1$ mark $)$

On a course outline, the teacher has indicated that the course work is worth $70 \%$ of the final mark and the exam is worth $30 \%$ of the final mark.

Calculate the final mark of a student who has achieved $67 \%$ on the course work and $82 \%$ on the final exam.

## Answer:

$67 \times 0.7$
$=46.9 \% \quad \leftarrow 1$ mark
$82 \times 0.3$
$=24.6 \% \quad \leftarrow 1$ mark
$46.9+24.6$
$=71.5 \% \quad \leftarrow 1$ mark
OR
$\underbrace{(67 \times 0.7)}_{1 \text { mark }}+\underbrace{(82 \times 0.3)}_{1 \text { mark }}=\underbrace{71.5(\%)}_{1 \text { mark }}$
Note to marker: "\%" not required.

## Exemplar 1



Mark: 0 out of 3
Rationale: - Incorrect solution

## Exemplar 2

$$
\begin{array}{ll}
F M-70 \% & 0.70 \times 67=47 \% \\
\text { Exam-30\% } & 0.30 \times 82=25 \%
\end{array}
$$

Mark: 2 out of 3
Rationale: - Correct calculations (course work and exam) ( $2 \times 1$ mark)

## Exemplar 3

$70 \times 0.67=47$
$30 \times 0.82=25$
$47+25=72$

Mark: 3 out of 3
Rationale: - Correct solution (3×1 mark)

In a university class of 230 students, Kegan achieved $92 \%$ on the final exam. There were 23 students who scored lower than Kegan.
A) Calculate Kegan's percentile rank. (2 marks)

Answer:
$P=\frac{b}{n} \times 100$
$P=\frac{23}{230} \times 100 \quad \leftarrow 1$ mark for correct substitution
$P=10$ or 10 th or $P_{10} \leftarrow 1$ mark

Note to marker: Accept $\frac{23.5}{230}=P_{10}$ or $P_{11}$
B) The university will only give an award to the top $10 \%$ of students. Explain whether Kegan will get an award. (1 mark)

## Answer:

He will not receive an award as they only recognize the top $10 \%$ of students and he only ranked in the 10th percentile.

## Exemplar 1

A) $p=\frac{b}{n} \times 100$
$P=\frac{23}{207} \times 100$
$P=0.11 \times 100$
$P=11.1$
B) he will not get an award because he is $11.1 \%$ in the class

Mark: 1 out of 3
Rationale: - Incorrect substitution in Part A

- Correct solution in Part A (follow-through error) (1 mark)
- Incorrect response in Part B


## Exemplar 2

A) $P=\frac{b}{n} \times 100$

$$
=\frac{23}{230} \times 100=10 \%
$$

B) Yes, because he has a percentile rank of $10 \%$

Mark: 1 out of 3
Rationale: - Correct substitution in Part A (1 mark)

- Incorrect response in Part B


## Exemplar 3

A) $\operatorname{Pr}=\frac{23}{230} \times 100$
$=10$ th percentile rank
B) Yes, Kegan will get an award because he is in the 1Oth percentile rank.

## Mark: 2 out of 3

Rationale: - Correct solution in Part A ( $2 \times 1$ mark)

- Incorrect response in Part B


# Appendix: <br> Irregularities in Provincial Tests <br> A Guide for Local Marking 

During the marking of provincial tests, irregularities are occasionally encountered in test booklets. The following list provides examples of irregularities for which an Irregular Test Booklet Report should be completed and sent to the Department:

- completely different penmanship in the same test booklet
- incoherent work with correct answers
- notes from a teacher indicating how he or she has assisted a student during test administration
- student offering that he or she received assistance on a question from a teacher
- student submitting work on unauthorized paper
- evidence of cheating or plagiarism
- disturbing or offensive content
- no responses provided by the student (all "NR") or only incorrect responses ("0")

Student comments or responses indicating that the student may be at personal risk of being harmed or of harming others are personal safety issues. This type of student response requires an immediate and appropriate follow-up at the school level. In this case, please ensure the Department is made aware that follow-up has taken place by completing an Irregular Test Booklet Report.

Except in the case of cheating or plagiarism where the result is a provincial test mark of $0 \%$, it is the responsibility of the division or the school to determine how they will proceed with irregularities. Once an irregularity has been confirmed, the marker prepares an Irregular Test Booklet Report documenting the situation, the people contacted, and the follow-up. The original copy of this report is to be retained by the local jurisdiction and a copy is to be sent to the Department along with the test materials.

## Irregular Test Booklet Report

Test: $\qquad$
Date marked: $\qquad$
Booklet No.: $\qquad$

Problem(s) noted: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Question(s) affected: $\qquad$
$\qquad$
$\qquad$

Action taken or rationale for assigning marks: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Follow-up: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Decision: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Marker's Signature: $\qquad$

Principal's Signature: $\qquad$

For Department Use Only—After Marking Complete
Consultant: $\qquad$
Date: $\qquad$


[^0]:    Mark: 1 out of 2
    Rationale: - Incorrect answer in Part A

    - Correct answer in Part B (1 mark)

