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July 23, 2009 

Dear Students and Teachers of Manitoba, 

The Manitoba Division of the Canadian Cancer Society has been pleased to fund 
this interesting and informative curriculum guide in health physics – Health and Physics: A 
Grade 12 Manitoba Resource for Health and Radiation Physics and its   
associated Teacher Resource Guide.  The project has been a partnership and fruitful 
collaboration among many individuals and organizations, including: students and 
teachers of physics who assisted in the pilot phases, the Department of Education, 
Citizenship and Youth’s science consultants, medical physics expertise from 
CancerCare Manitoba and the St. Boniface Hospital Research Centre, and our staff here 
in the Manitoba Division of the Canadian Cancer Society.   

The Canadian Cancer Society, Manitoba Division allocated donor dollars to this project 
as a demonstration of its commitments to public education in the sciences and to the 
well-being of all Manitobans.  Our mandate is to serve all Manitobans who are at risk of 
developing cancer as well as those with cancer.  We invested in this project as a 
meaningful connection to young adults, with the conviction that informed citizens are 
stronger advocates for their own health and the health of their families. 

We believe that the information in the physics resource material will be of interest to 
students and their parents as the information is an excellent reference guide to imaging 
technology that is critical to much of health care.  Imaging and radiation physics is also 
a core part of the cancer patient experience. 

We are proud to have been associated with this project, and hope that students, teachers 
and families will find the material informative and useful for their future.  

Mark A. McDonald 
Executive Director 
Canadian Cancer Society, Manitoba Division 
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CASE STUDY: Francine Yellowquill - a Diagnosis
Francine Yellowquill was an active teenager, enjoying participating in all kinds of sports. 
Her favourite sport was gymnastics. She regularly practiced somersaults, handstands, and 
complicated jumps over sawhorses and on balance beams. One day she attempted a new 
manoeuvre upon dismounting from the balance beam, and ended up accidentally landing 
on her head. Excruciating pain shot through her back, as if thousands of hot needles were 
jabbing into her simultaneously. Instantly, her coach was at her side and called for an 
ambulance. The emergency doctor asked her some key questions and then promptly sent 
her for x-ray. “You might have a problem with trauma in two or three cervical vertebrae in 
your neck area,” it was explained following x-ray. The doctor then ordered a CT scan, which 
confirmed the initial diagnosis of broken vertebrae in Francine’s neck. 

As she went for these tests, Francine (who always had an eye for technical explanations of 
things) began to ask some questions. What kinds of technologies are being used on me? How 
do these imaging machines actually work? Why did I need to go for more than one type of 
imaging? Could the doctor obtain the same diagnosis without resorting to a technology that 
uses ionizing radiation? Fictitious patient (stock photo)

X-Rays

In late 1895, Wilhelm Roentgen was working at Wuerzburg University in Germany with 
a cathode-ray tube in his laboratory. While conducting his experiments, he noticed that 
phosphorescent crystals glowed in the presence of the working tube. When Roentgen 
created a vacuum in the tube and applied a high voltage to the electrodes, a fluorescent glow 
appeared. Roentgen concluded that a new type of ray was being created by this apparatus. 
Through further experiments, he concluded that this ray could pass through most substances. 
What he discovered was what we know in a familiar fashion as the “x-ray.” The letter “x” in 
x-ray derives from the Greek “xenos” which means something “foreign” or “strange” to  
typical experience.

An x-ray is a photon, or bundle of energy, which is essentially without mass and has no 
charge. The typical wavelength for an x-ray is between 0.01 to 10 nanometres. Because x-rays 
are produced by accelerating electrons towards a target (a large potential difference), they are 
not a natural form of radiation. X-rays are used in both x-ray technology and CT (Computed 
Tomography) devices.

X-rays are a form of radiation that has shorter wavelengths than UV radiation. For most 
medical applications, x-rays have a short enough wavelength to demonstrate behaviour more 
like that of a particle than a wave. So, their particle-like qualities are favoured over their 
wave-like nature. In x-ray crystallography—where x-rays are used to help determine the 
structure of crystals—the opposite is the case. 

In the decades following Roentgen’s discovery of x-rays, widespread and unrestrained 
experimentation with this new form of radiation followed. As a result, some excessive 
experimenters developed serious injury to the body from overexposure to this form of 
radiation. Typically, these injuries were not attributed to x-rays because the onset of the 
injuries was progressive over time. At one point, x-rays were used by assistants in shoe shops 
to determine children’s shoe sizes! Eventually, though, the field of health physics emerged 
that looked to manage the dangers of radiation technologies while still exploring their 
potential and real benefits.

chapter 1 
Radiation-Based Diagnostic Technology
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Reality Check…
Question | Can Sustaining a Physical Injury Cause Cancer? 

Origin: In the late 1800s until the early 1920s, some scientists thought injuries (or trauma to 
the body) could cause cancer, despite the lack of any compelling experimental evidence. 
Many patients who came in with physical injuries had x-ray imaging performed on them, and 
in the process tumours were discovered.

Reality Check: A fall, a bruise or any other injury is almost never the cause of cancer. 
Typically, a physician orders some sort of imaging for injuries incurred, and when images 
are analyzed a tumour may be found at the same time. This does not mean that the tumour 
stemmed from the injury, however. The tumour was already there. The diagnostic procedure 
merely located the tumour while the technologist was requested to take images looking for 
bone and tissue damage. 

Terry Fox, a well-known Canadian who died in 1981, had been an active teenager involved 
in many sports until a knee injury sidelined him at age 18. During the diagnosis and treatment 
process, bone cancer was found and he was forced to have his right leg amputated above the 
knee. Terry is best remembered for his Marathon of Hope, which was a cross-country run to 
raise funds for cancer research. His legacy lives on through the Terry Fox Foundation.

Source: Gansler, Dr. Ted. “Discovery Health: Top 10 Cancer Myths: Myth 7.” Discovery Health n.d.. 29 July 2008 

http://health.discovery.com/centers/cancer/top10myths/myth7.html

The Electromagnetic Spectrum

When you listen to the radio, watch television, cook food in the microwave, use a tanning 
bed, or go to the doctor to get an x-ray, you are using electromagnetic waves. A wave is 
simply a vibration that is propagated through a medium such as air. An electromagnetic wave 
is a vibration produced by the acceleration of an electric charge. Though we cannot actually 
“hear” sound waves, our ears are designed to respond to these mechanical waves and it is via 
this response that we hear. Visible light, as part of the electromagnetic spectrum, helps us to 
“see” colours because photons from light sources fall within the range of wavelengths that the 
receptors in our eyes can translate into red, blue, green and other variations. Other types of 
waves are not registered by the human body through sound or sight. Microwaves and x-rays 
are two examples of such waves.

Figure 1-2 shows the different wavelengths, frequencies, and energies that waves in the 
electromagnetic spectrum have. Note that radio frequency waves are among the largest in 
wavelength, with x-rays having incredibly small wavelengths. As wavelength decreases, the 
frequency of the wave (and the amount of energy the wave carries) increases.

Wavelength
(in meters)

Size of a 
wavelength

Common 
name of wave

Sources

Frequency 
(waves per 

second)

Energy of  
one photon 

(electron volts)

RADIOWAVES

MICROWAVES

AM 
RADIO

FM 
RADIO

MICROWAVE 
OVENS RADAR PEOPLE

LIGHT 
BULB THE ALS

X-RAY 
MACHINE

RADIOACTIVE 
ELEMENTS 

“SOFT” X-RAYS GAMMA RAYS

“HARD” X-RAYSULTRAVIOLETULTRAVIOLET VISIBLE

RF 
CAVITY

HOUSE

SOCCER 
FIELD

BASEBALL

THIS PERIOD
CELL

BACTERIA VIRUS PROTEIN WATER MOLECULE

103  102 101 1 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12

106  107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

10-9  10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 101 102 103 104 105 106

HIGHERLOWER

LONGER LOWER
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The chart shows the relative sizes, frequencies, and wavelengths of the different types of 
electromagnetic waves. The visible portion of the electromagnetic spectrum (light) is a small 
portion of the chart. UV, x-ray, and gamma rays all have shorter wavelengths and higher 
frequencies than the visible spectrum. By contrast, ultrasound—which is commonly used in 
medical imaging—is not an electromagnetic wave at all. Rather, it is a very high frequency 
sound wave beyond what our auditory systems are capable of hearing.

Questions: Electromagnetic Spectrum

1  Calculate the wavelength of radiofrequency waves that an FM radio station emits when 
broadcasting at 88MHz. ( Use ν = fλ, and find the speed of sound in air at 20 degrees C 
from your physics tables)

2  What is the difference between “soft” and “hard” x-rays (mentioned in Figure 1-2)?

3  What is the wavelength used by cell phones compared to the wavelength of the gamma 
rays used in PET scans? Which carries more energy?

4  What is the difference between UV-A and UV-B ultraviolet light?

5  What is the difference between sound waves we hear and ultrasound? Are sound waves 
considered part of the electromagnetic spectrum?

X-Ray Diagnosis

The use of “x” in the phrase “x-ray” is similar to when mathematicians use the symbol “x” to 
represent the “unknown.” When x-rays were first discovered, there were many things that 
were “unknown” about them. Recall the connection to the Greek word “xenos”, meaning 
‘foreign’.

X-ray machines use a form of electromagnetic radiation produced when electrons are 
exposed to a large potential difference, or voltage. The electrons gain so much extra energy 
that this potential energy becomes kinetic energy and the electrons move quickly, colliding 
with the metal target plate. The rapid change in velocity causes the release of x-rays. This 
burst of radiation is aimed by the machine at the patient through positioning an extendable 
arm over the area of the body to be studied (see Figure 1-3). The x-rays pass through the 
body and an image of what they pass through is recorded on photographic film or is digitally 
generated. Because different parts of the body have different densities, the image will show 
lighter sections (indicating greater density and passage of fewer x-rays through the substance) 
and darker sections (lesser density and more x-rays traveling through). The picture obtained 
by this method is called a radiograph. Radiographs show clear images of bones and potential 
damage to them; however, they are limited in their ability to produce images of soft tissues 
that have clarity for diagnostic purposes. The reduction in the number of x-rays traveling 
through dense material is called attenuation, or ‘loss’.

Arthrography is a procedure where a substance such as iodine (mixed with water) is injected 
into the space between joints so that an x-ray can be taken to study how the joint is functioning 
and to study its structural anatomy.

activity
Tissue Attenuation

Tissue attenuation is 
an important concept 
in our understanding 

of x-rays and how their 
penetration into tissues 

affects image quality.

Shine a flashlight 
on a piece of tissue 
paper that someone 

is holding up in a 
darkened room. 

How much light goes 
through the tissue 

paper?

Now fold over one 
corner of the paper 
so there is a double 

layer of tissue paper. 
How much light goes 

through the double 
layer compared to the 
single layer? How do 
these results help in 

the understanding of 
radiographs?

Figure 1-3  This x-ray machine has a bed for the patient to lie on and a tray 
underneath the bed to hold the radiographic film. The source of x-rays comes from 

the arm extended above the bed. Note that if a patient was lying on the bed, the 
arm would be rotated to aim the x-rays downward rather than towards the left 

wall (as is shown on the picture).
Figure 1-3
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Mammography is a specialized field of x-ray technology, where low energy x-rays are used to 
produce images of breast tissue. Radiologists use these images to detect differences in density, 
mass, or to spot calcifications that may indicate the presence of tumours. Low energy x-rays 
provide greater definition in the images. Higher energy x-rays travel fast and the result is an 
indistinct radiograph with lower contrast due to lower attenuation by the tissues involved.

activity
X-Ray analysis
Below are nine different x-rays of various parts of the human body. Imagine you are the 
x-ray technician asked to analyze each radiograph, or to guide the attending physician. 
Do you see something that is unusual in any of these images? What do the unusual 
sections potentially indicate? Why are some areas of the x-rays brighter? For each image, 
discuss in small groups whether the differences in brightness are more likely due to 
density, thickness, or the nature of the material (attenuation coefficient). 

Figure 1-5 chest  Figure 1-6 molars Figure 1-7 panoramic dental

Figure 1-8 forearm Figure 1-9 knees Figure 1-10 forearm

        
Figure 1-11 colon Figure 1-12 skull Figure 1-13 breast
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Research Questions: 

Why use iodine in arthrography and not other elements? What does calcification refer to?

Question: 
Note that the wrist joint of Figure 1-4 is brighter than the finger joints. What does this 
tell you about comparative bone densities or thicknesses of the bone tissues? 

Figure 1-4    
This is an x-ray image of a person’s hand. Note the detailed, high contrast image of 

the bones, including brighter and darker areas. X-rays can be used to determine 
whether an individual has osteoporosis by studying the comparative densities of bone 

areas and noting potential damage.

Want to learn more about the nuclear model of the atom? Check out Chapter Five!

In The Media…  

Airport x-ray scanning devices are used around the world as a vital component of airport 
security measures. The devices are used to scan luggage and carry-on items to ensure that 
accelerants, weapons, and other dangerous goods are not taken onto the plane. In the United 
States, the National Council on Radiation Protection continues to perform research on the  
general public to track radiation exposure from every-day devices such as these machines. To 
date, their studies continue to show that there is only very low radiation exposure from these 
devices. You can read their most recent findings on their website: www.ncrponline.org

Natural Forms of Radiation
The nucleus of an unstable atom can decay, or transform, releasing energy in the form of either 
particles or waves. There are many types of natural radiation, including exposure to naturally 
occurring stratospheric radiation when in an airplane and radon exposure from the earth in the 
form of radon gas. We will focus on the following three forms: alpha, beta, and gamma radiation. 

Alpha decay occurs when the nucleus of an unstable atom releases an alpha particle. An alpha 
particle is positively charged, and is essentially indistinguishable from a helium nucleus. The 
reason why scientists do not refer to it as a helium nucleus is because at the time alpha particles 
were discovered, they were not fully understood. It was only much later that it was determined 
that they were two protons plus two neutrons traveling together. Isotopes of elements that 
release alpha particles are known as alpha emitters.

Alpha particles carry high amounts of energy, but have low ability to penetrate through 
substances. In fact, substances as thin as a piece of paper can prevent alpha particles from 
penetrating through to the other side. Though alpha particles can be stopped by mere paper, if 
humans inhale or ingest them they can cause enormous amounts of damage. 

Uranium-238 is an example of a substance that undergoes alpha decay. Its nucleus is left with 
two less protons and two less neutrons, so a daughter nucleus is produced. This nucleus 
forms the centre of the thorium-234 atom. A subatomic change, or transmutation, occurred in 
the uranium to become a completely different chemical element. You may recall from earlier 
science courses that it is the number of protons in the nucleus that uniquely defines which 
element we are referring to.

Beta decay occurs when a beta particle is released from an unstable atom. A beta particle can be 
either a high speed electron or a proton. If the process of beta decay releases an electron, it is 
referred to as beta-minus ( β - )decay. Release of a proton is called beta-plus ( β + ) decay.

Figure 1-14     
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When beta particles enter a substance, they cause a physical/chemical change. Glass, for 
instance, becomes darker after being exposed to beta radiation. Most beta particles do not have 
the energy to penetrate the skin, but constant bombardment of one area of skin with these 
particles can eventually cause damage. One common form of beta decay is when carbon-14 
releases a beta particle and becomes nitrogen-14. Because a nuclear change took place, 
transmutation occurred.

Unstable atoms, as mentioned previously, may have an excess of subatomic particles. However, 
sometimes there is simply an excess of energy rather than an excess of particles. This is when 
gamma rays are emitted. A gamma ray is a high energy photon with a wavelength of less than 
0.1 nanometres. Typically, gamma rays are emitted by the nucleus whereas x-rays are emitted 
from the electron cloud in an atom.

Gamma rays are often produced alongside the release of alpha or beta particles, especially 
if the substance emitting the particles is in an excited state. Gamma rays are high energy 
electromagnetic waves, and as such cause serious damage when in contact with living cells.

When a gamma ray is emitted, the nucleus changes from a higher-level energy state to a lower 
level. Just as electrons in an atom have energy levels, the nucleus has energy levels. When 
electrons are in a higher energy level (or state), they release usually a few electron-volts (eV) of 
energy in the form of visible or ultraviolet light. When a nucleus is in a higher energy state and 
wants to return to a lower and more stable energy level, it releases energy in the range of a few 
hundred kiloelectron-volts (keV). The chemical makeup of the atom emitting a gamma ray does 
not change. The chemical makeup of the atom does change if it emits either an alpha or beta 
particle. (Note: an electron-volt is defined as the energy gained by an electron when it travels 
through a potential of one volt.)

Figure 1-15

Research Questions: Mammography & Alternatives

Mammograms are not able to confirm the absence or presence of cancer, although 
mammography combined with pathology confirms or denies the existance of cancer. 
However mammography is a significant tool in finding abnormal growths that are not at the 
palpable (sensed by touch examination) stage. What could a doctor, attempting to provide 
an accurate diagnosis, suggest to a patient who has just received positive test results on her 
mammogram? 

What does a positive test result mean for a mammogram? (Cancer? A calcium deposit?  
A benign tumour? (What does benign mean?) Something else? All of the above?) 

What other types of diagnostic technologies could be used to confirm or nullify the positive test results?

Research and compare rates of breast cancer in males and females of similar ages.  
Are they the same or different? What have you found?

The Canadian Cancer Society has a particular set of positions with respect to breast cancer 
screening through mammography. It is important that you become familiar with these 
positions and talk about these with family members who are among the risk groups for 
developing breast cancer.

Benefits and risks of screening
Almost every test or procedure carries benefits and risks. The important thing is to be aware 
of them so that you can make an informed decision that is right for you.

No screening test is 100% accurate but a good screening test is one that results in a decrease 
in death rates in people with cancer.

Researchers also look for other benefits of screening including improved quality of life or less 
harmful treatments as a result of finding the cancer early.
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Benefits of regular screening
•	 Earlier detection of cancer: In most cases, the earlier a cancer is detected, the better your 

chance of survival. Early detection may also mean less treatment and less time spent 
recovering. 

•	 Reducing the anxiety of “not knowing”: Many people prefer to have ‘check-ups’, just like a 
physical exam with your family doctor.

Risks of regular screening
•	 False positive results: When test results suggest cancer even though cancer is not present. 

False positives can result in anxiety, stress and possibly painful and unnecessary tests to 
rule out cancer (that is, to make sure you don’t have cancer when the screening test has 
suggested you might). 

•	 False negative results: When cancer not detected by the test even though it is present. False 
negative results can cause you or your physician to ignore other symptoms that indicate 
the presence of cancer, causing a delay in diagnosis and treatment. 

•	 Over-diagnosis: Some cancers would not necessarily lead to death or decreased quality of 
life. For example, some prostate cancers never become clinically apparent, meaning that 
they do not cause any symptoms, nor do they affect life expectancy or quality of life. Men 
with these tumours may not ever develop symptoms or need treatment for cancer. 

•	 Increased exposure to harmful procedures: for example very low doses of radiation from 
x-ray tests.

What makes a good screening test
The World Health Organization (WHO) suggests reviewing several factors before introducing 
a test as a screening tool for the general population. These include:

•	 Sensitivity: How effectively the test identifies people who actually have cancer?

•	 Specificity: How often a test gives negative (normal) results for people who do not have 
cancer?

•	 Acceptability: Will the population who will benefit the most from the test (the “target 
population”) agree to be tested by this method?

Tests that can be used for diagnosis and screening
Some tests that are used for screening can also be used to diagnose or rule out cancer in 
people who have reported symptoms to their doctors. For example, mammograms can be 
used for both screening and diagnostic purposes:

•	To screen women with no signs of breast cancer, or 

•	To help diagnose women who do have signs of breast cancer (or rule out cancer in 
women who have signs of breast cancer)

Your doctor will be able to explain what type of test you are having and why you are having 
the test.

M A N I T O B A   D I V I S I O NM A N I T O B A   D I V I S I O N

You can find much more information from the 
Canadian Cancer Society’s online information pages 
found at: www.cancer.ca
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Did You Know
N-Rays…Debunked!

In the spring of 1903, French researcher Rene Blondlot published a paper explaining 
the purported discovery of a new type of radiation called N-rays (N for Nancy, his 
hometown in France). This caused excitement among the scientific community, as the 
discovery followed closely after x-ray discoveries in 1895. Many scientists published 
research papers on N-rays in the most prestigious scientific journals in France, and all 
claimed to have confirmed the existence of the new N-ray experimentally.

Not all physicists were confident in the existence of N-rays, however. One such 
physicist was Robert Wood (Figure 1-16) from  Johns Hopkins University in Baltimore, 
Maryland. In the summer of 1904 he traveled to France to meet Blondlot and observe 
the experimental apparatus used to confirm the existence of N Rays.

Blondlot chose to show Wood his most well-known demonstration, where he 
claimed N-rays could be spread out into a spectrum by a prism. The spectrum 
could be detected by noting small increases in brightness along various points of a 
phosphorescent strip. Though many experimenters claimed to see these brighter points, 
others (including Wood) could see no evidence of this. While Blondlot was setting 
up his equipment to demonstrate the spectrum to Wood, Wood quietly removed the 
prism and waited for the experiment to be completed. Once again, Blondlot affirmed 
the existence of the spectrum, which could only be created in the presence of the 
now-missing prism, and claimed that Wood’s eyesight was not good enough to see 
the results. After repeated demonstrations of this “spectrum,” Wood became convinced 
that experimenters were imagining the results. Without the presence of the prism, 
a spectrum could not be created, yet experimenters claimed they saw one. Wood 
concluded N-rays did not exist.

In the end, many researchers reluctantly, and quietly, retracted their published results 
in what became a rather spectacular blunder in the history of modern physics. Was it a 
classic case of “believing is seeing”? In science, we often say that “extraordinary claims 
require the most extraordinary evidence to back them up.” Maybe, in the N-ray affair, 
we learned that valuable lesson yet again. What you may want to do now is to turn up 
what you can on a very recent example of nuclear science controversy – the so-called 
“cold fusion” phenomenon. Access information online at: http://freeenergynews.com/
Directory/ColdFusion/  or a rather advanced level discussion at: 

www.infinite-energy.com/iemagazine/issue1/colfusthe.html 

For more information on Wood, Blondlot, and N-Rays, see the website of the American Physics Society at www.aps.org

Figure 1-16   
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Computed Tomography (CT)

Computed Tomography (CT) uses x-radiation to create higher resolution images than a simple 
x-ray machine can produce alone. 

Tomography is the process of obtaining a two-dimensional “slice” or cross section of a three-
dimensional object, such as a patient undergoing imaging to detect an abnormality. 

In CT scans, multiple tomographs, or cross sections (from the Greek words “tomos” meaning 
“section” and “graphos” meaning a “picture”) of a patient can be produced and linked together 
by a computer to create a three-dimensional image of the area being studied, something not 
possible with simple x-ray machines. This type of technology is invaluable in determining the 
presence of cancer, as the images produce measurable pictures of tumour growths. They also 
clearly show soft tissues (and potential damage), as well as even the tiniest bones or fragments 
broken off due to injury. CT scans can be used to determine bone mineral density too.

Sometimes, patients are asked not to eat or drink anything for 12 hours before going for a CT 
scan. This is so that technicians can administer a contrast agent internally, allowing for better 
diagnosis of certain conditions or diseases. For instance, barium sulfate is sometimes used to 
make parts of the gastrointestinal tract opaque (dense to x-rays) during a CT scan. 

Francine’s Case Study Continued:
Francine’s doctor ordered a CT scan to confirm the initial diagnosis of a broken neck. The 
x-ray obtained showed fractures in two vertebrae. The CT scan confirmed those fractures, 
but was also able to show if there were any bone fragments and where they were located. 
The doctor then determined if the fragments should be removed, or if they would be able to 
remain safely.

activity
X-RAYS and CT  

SCANS – the LINKS 

One of the main 
differences between 
x-ray machines and 

CT scanners is that CT 
scanners are highly 

sensitive in detecting 
abnormalities in soft 

body tissues. CT 
scanners have the 
ability to provide 

images of internal 
organs, which x-ray 

machines cannot.

LIST—list in point 
form what you know 

or remember about 
x-rays and CT scans. If 
you remember a term 
but not the definition, 

make a note of that 
too.

INQUIRE—share your 
list with three of your 

classmates. Have them 
share their lists with 
you. Ask each other 

what connections 
between x-rays and CT 

scans were made in 
your notes and why.

NOTE—put away your 
lists and give yourself a 

brief quiz to see what 
you remember about 
your discussions and 

connections made. 

KNOW—compare 
your quiz results to 

your notes. What do 
you still need to know 

or learn?

Figure 1-18  Here is an example of a cross-
section of a person’s brain produced by a CT 
scanner. Note that the image is not in colour. 
Images can be checked by technicians for 
bone abnormalities, fluid retention, tumours, 
haemorrhages, trauma or skull fractures 
among other things. In this image, the darker 
areas in the upper right indicate the presence 
of subdural (beneath the skull) trauma or 
blood clotting.

Figure 1-17  Similar to an x-ray machine, a 
CT scanner has a flat bed for the patient to lie 
on. The bed slides into the “donut hole,” where 
one section of the ring contains a source of 
x-rays that radiate outwards in a fan shape. 
The other section of the ring contains a 
banana-shaped detector. This ring can rotate 
around the patient. One full rotation produces 
one cross-sectional slice or “profile.” 



Figure 1-19
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Cancer Connection…        

Do x-rays, CT and PET scans increase your risk of getting cancer?

Exposure to x-rays and gamma rays over time, even at low-dose levels, increases the risk 
of cancer. That is the conclusion of a comprehensive five-year study by a National Research 
Council (NRC) committee. Keep in mind that this is a statistical risk based on who gets cancer 
and who does not seem to.

“There appears to be no threshold below which exposure can be viewed as harmless,” said 
Stanford University’s Herbert L. Abrams, Professor Emeritus of radiology at both Stanford and 
Harvard Universities and a member in residence at the Centre for International Security and 
Cooperation (CISAC) in the Freeman Spogli Institute for International Studies. 

However, if you were to ask Dr. David Boreham of McMaster University in Canada the same 
question, his experimental results suggest otherwise.

“There are lots of people out there making the argument that if you get a single CT scan 
a year over five years, your risk of getting cancer goes up four or five percent. This is all 
based on extrapolation from radiation exposure studies of WWII atomic bomb survivors, 
and that was one single, large dose.” Based on his research that studies patients who have 
x-ray exposures and other diagnostic radiation procedures, Boreham believes that low dose 
radiation may not be cumulative in its effects at all. In fact, he believes that cells can even 
adapt to low levels of radiation exposure. This is an exciting scientific debate, and you are 
encouraged to explore it.

Sources: Stanford University. “Even Low Exposure To X-rays, Gamma Rays Increases Cancer Risk, Study Finds.” ScienceDaily 
27 October 2005. 29 July 2008 www.sciencedaily.com /releases/2005/10/051027090539.htm

McMaster University. “The Strange Arithmetic of Radiation.”  Ontario Innovation Trust n.d.. 29 July 2008  
www.oit.on.ca/Pages/SStories41-60/StoryMcMasterRadiation.html

CASE STUDY CONTINUED: Francine’s Next Steps
Francine now understood with greater clarity what the differences were between x-ray and 
CT scans. She knew that CT scans provided her doctor with more information than the x-ray 
had due to its greater resolution of soft tissues. She understood the importance of having 
more than one type of diagnostic procedure, because each technology could provide her 
doctor with different information.

Could her doctor obtain a diagnosis without resorting to technology that uses radiation? Not 
likely with this kind of injury that can have hidden difficulties. She was beginning to realize 
that radiation-based technology was sometimes the only choice available. As is always the 
case with radiation exposure, the benefits of undergoing the procedure are weighed against 
the known risk factors. In this case, Francine and her doctor looked at both the nature of her 
injury and the consequences of low-level exposure to ionizing radiation sources.

So now that they knew two vertebrae were damaged, what would be the next steps for 
Francine? Her doctor told her that at least one other diagnostic procedure needed to be 
performed in order to confirm whether any soft tissue damage had occurred around the 
spinal cord. But he had other news for her too….
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Positron Emission Tomography (PET) Scanning

Positron Emission Tomography (PET) usually involves injected radioactive tracer material 
(radiotracers) to diagnose differences in biological activity in the body. Thus, the source of 
radiation is internal rather than external (as with x-ray and CAT scanners). The radiotracer 
collects in the area of body to be examined. The tracer continually radioactively decays, 
producing gamma rays that are detected by the PET scanner. A computer takes the detected 
ray data and converts it into pictures that show details of organs and tissues. These pictures 
do not produce clear images of organ and tissue structure (as CT scans would). Rather, 
the pictures show levels of biological activity in the body. Violet areas (areas of greater 
chemical activity) are called hot spots and indicate where large amounts of the radiotracer 
have accumulated. Lighter (blue) areas, or cold spots, show smaller concentrations of the 
radiotracer and therefore less chemical activity. 

The most common radiopharmaceutical (or radiotracer) used in conjunction with PET scans 
is fluorine-18 (18F). Other radiotracers used are oxygen-15 (15O), nitrogen-13 (13N), and 
carbon-11 (11C), however these isotopes are typically confined to use in research activities. 
All of these isotopes emit positrons. A positron has the same mass as an electron, but has 
opposite charge.

PET scanners are commonly used to detect cancers. Images from PET scanners are created by 
having the device measure the varying amounts of radiotracer within the patient’s body.

Figure 1-20 PET scans measure body functions 
such as blood flow, oxygen use, and metabolic 
rates. This helps doctors evaluate how well 
organ and tissue systems are working. 
Oftentimes, medical technicians are able to 
superimpose CT scans with PET scans from 
the same diagnostic machine, which correlate 
information and images from more than 
one source and leads to greater accuracy 
in information obtained and diagnosis 
of conditions. Most modern PET scanners 
incorporate a CT scanner within them.

Figure 1-21 PET scans can be in black 
and white or in colour. Darker images (on 
black and white scans) or “hot spots” (red 
and orange parts of colour scans) indicate 
the collection of more of the tracer given 
to the patient. Tracers tend to be added to 
something like sugar water that is injected, 
so the tissues and organs that use glucose for 
energy show radioactive decay. Cancerous 
tissue uses more glucose than normal tissue, 
thus the darker images or hot spots can be 
cause for analysis by the technician.
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Terms of Interest:

alpha particle health physics

arthrography isotope

attenuation mammography

beta particle PET (Positron Emission Tomography)

CT (Computed Tomography) positron

electromagnetic radiation radiograph

electromagnetic spectrum radiopharmaceutical

electromagnetic wave tomography

electron-volt (eV) x-ray

frequency UV radiation

gamma ray

Career Moves…
Nuclear Medicine Technologist   
All it takes is two years post-secondary to become a nuclear medicine technologist. In this 
growing career area, trained individuals use radiopharmaceuticals and specialized instruments 
to help with diagnosis and treatment of injuries and diseases. As of 2009, there are practicum 
programs located in Calgary, Edmonton, Red Deer, Regina, Saskatoon, and Winnipeg. After 
graduation, work can be found in a hospital, private laboratory, community clinic, and in 
research or teaching institutions.

Career Connection Website – Canadian Association of Medical Radiation Technologists: 
www.camrt.ca/english/career/nmt.asp

Chapter 1 Review: Concepts and Terms

Concepts: X-ray machines and CT (computed tomography) scanners both use radiation in 
order to create an image for diagnostic analysis. Contrast agents (which are not radioactive) 
can be used in concert with these procedures to develop greater contrast in the images for 
better analysis. Arthrography and mammography are specialized forms of x-ray diagnosis.

PET (positron emission tomography) scanners use radiopharmaceuticals (radioactive tracers) 
to create a tomographic image (cross-sections in the body) for diagnostic analysis. Modern 
PET scanners have CT technology built into them.

There are many forms of natural radiation – this chapter focused on alpha, beta, and gamma 
radiation.

Figure 1-22
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chapter 2 
Other Forms of Diagnostic Technology
CASE STUDY CONTINUED: Francine Has Questions About Radiation
Francine knew now that the doctor’s initial request for an x-ray was to obtain a quick 
diagnosis. The doctor ordered the CT scan in order to locate the bone fragments from her 
injury that first turned up on the initial x-ray image. Next, a neurologist visited Francine 
and ordered an MRI scan. The results of this procedure confirmed that the second and 
third vertebrae had two small sections broken off and these sharp bone fragments were 
dangerously close to the spinal cord. Though she had not been sent for a PET scan or 
ultrasound, Francine could not help but wonder what the effects from this technology would 
be on her body in the longer term. Why did she need to get an MRI when she had already 
had an x-ray and a CT scan? Would she need a PET scan or ultrasound? Did MRI represent 
another instance of radiation exposure for Francine?

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI), often referred to as magnetic resonance (MR), does 
not depend on radiation to create images. Instead, MRI devices use powerful magnetic 
fields to align hydrogen atoms in the body. Radiofrequency coils produce high frequency 
magnetic fields that excite the protons in the nuclei of these atoms. The protons release this 
gained energy in detectable amounts by creating their own magnetic fields. A computer 
analyzes these magnetic field signals to produce detailed images of organs, other soft tissues, 
bone, and almost all other internal body structures with astounding resolution. This type of 
imaging produces even more contrast detail than that realized by CT scans. Like CT scans, 
multiple images can be produced and then linked together by a computer to create a three-
dimensional image that can then be studied. 

The typical contrast agent used in conjunction with an MRI is gadolinium. Gadolinium is a 
ferro-magnetic element, perfect for use in a diagnostic procedure dependent upon magnetic 
field interactions. Diagnosticians need to be diligent about removing metal objects from 
the general area where testing occurs, as the objects’ magnetic fields could affect the image 
results.

MRI scans can be used for both diagnosis and monitoring of conditions. Typically, the 
distinction between abnormal and normal tissues on an MRI is more easily detected than on 
a CT scan, x-ray, or even ultrasound. This does, however, depend strongly on the type of 
study done.

Figure 2-2 This image of a cross-section of the human brain was produced using MRI . 
Whether using colour or black-and-white images, however, technicians will look for a 
contrast in colour or shading. What they look for depends strongly on the scan parameters 
and the sequence of scans. Technicians look for “hot spots” (or so-called “false colour” 
images, hot spots can sometimes be coded as being yellow) that may indicate tumour growth. 
Cold spots (sometimes shown by selecting cooler colours like shades of blue and violet) may 
indicate normal tissues and fluids.

Figure 2-2

Figure 2-1
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Figure 2-4  

Figure 2-3 The MRI machine pictured at left 
looks similar to a CT scanner in that there is 
a ring around the patient and bed. In MRI, 
however, the only moving part is the patient 
table. Many cross sections or images are taken, 
and multiple images can be compiled to create 
a three-dimensional image.

Research & Extension Questions: 

1. Why is gadolinium used as a contrast agent for MRI scans? 
 Why wouldn’t they use barium? Or cobalt? 

2. Discuss with a classmate what the list of general characteristics may be that would 
qualify an isotope as a “good” choice for use in diagnosis.

3. Could gadolinium be used in PET scans? Why (not)? 

Francine’s Case Study Continued:
Francine found out that the MRI scan did not involve any exposure to radiation. Though her 
x-ray and CT scan involved radiation exposure, her doctor assured her that total exposure 
was so minor it would not affect her overall health. In fact, her total exposure was much less 
than that received by a business traveller who flies periodically at high altitudes in jet aircraft. 
Just to provide some background on this issue, according to the Health Physics Society we 
receive about 3,600 microsieverts of radiation exposure every year from the environment 
as background radiation. A chest x-ray provides about 170 microsieverts, and a dental x-ray 
about 7 microsieverts. If you were a very frequent air traveller (say, >120,000 kilometres per 
year), then you actually receive the recommended yearly dose of radiation just by doing that. 
For more answers, check out the FAQs at: http://hps.org/publicinformation/ate/faqs/

Reality Check…
Question  |  Do Magnetic Fields Created By Power Lines Cause Cancer? 

Origin: Various researchers have studied the relationship between the rates of certain types of 
childhood cancer and the proximity of the children to high-voltage power transmission lines. 
Over the years, various e-mails have circulated saying that there is a direct link between how 
close you live to power lines and your risk of getting cancer.

Reality Check: According to Health Canada, research has shown that electromagnetic fields 
(EMFs) from electrical devices and power lines are not associated with any known health 
risks.

Many studies have been done on the effects of exposure to EMFs at extremely low 
frequencies. Though some studies have suggested a possible link between exposure to 
electromagnetic fields and certain types of childhood cancer, scientists at Health Canada claim 
that the evidence appears to be very weak.

The International Agency for Research on Cancer has classified electromagnetic fields as 
“possibly carcinogenic” to humans based on studies of childhood cancer. According to Health 
Canada, however, the evidence is not strong enough to conclude that EMFs definitely cause 
cancer in children. They believe that more studies are needed to draw firm conclusions.

Source: Minister of Health. “It’s Your Health – Electric and Magnetic Fields at Extremely Low Frequencies.”  Health Canada April 
2004. 29 July 2008  
www.hc-sc.gc.ca/hl-vs/iyh-vsv/environ/magnet-eng.php



15Manitoba Resource for Health and Radiation Physics Student’s Guide

Figure 2-7

Cancer Connection…
Sorenson’s Tumour-Suppressing Gene

Tumour-suppressing genes are regular genes whose job it is to slow down cell division, repair mistakes in 
DNA, and tell cells when to die. If these genes do not do their jobs, cells can grow out of control. When 
cells grow out of control, cancer may form. Approximately 30 different genes like this have already been 
discovered.

Researchers at the University of British Columbia, headed by Dr. Poul Sorenson (Figure 2-7), have discovered 
a new tumour-suppressing gene for the most common type of kidney tumour seen in childhood. Their studies  
have shown that lower levels of this gene, called HACE 1, may contribute to tumour development. As well, 
restoring levels of this gene within cancer patients has inhibited tumour formation. 

This ongoing study will help scientists understand how loss of this gene leads to tumour formation in 
children, which may then lead to new preventive treatments for patients.

Source: University of British Columbia. “Award Recipients – Trainee Profiles – Fan Zhang.”   
Michael Smith Foundation for Health Research June 14 2005. 29 July 2008  
www.msfhr.org/sub-funding-recipients-profile.asp?award_recipient_id=549

Ultrasound

Ultrasound imaging uses ultrasonic sound waves to diagnose various conditions. A transducer converts an electrical pulse 
into a mechanical vibration – a high frequency sound wave. This sound wave bounces off various surfaces in the body. 
The transducer registers returning reflected sound waves, and converts them back into electrical pulses. A computer 
transforms these pulses into an image on a monitor. 

Some kinds of tissue or fluid cannot be detected in x-ray images but are locatable with ultrasound technology. A large 
advantage of ultrasound technology is the ability to produce real-time images in motion format. 

The Doppler Effect and ultrasound technology can be used to determine blood flow. The Doppler Effect registers the 
change in frequency with which a wave from a given source reaches an observer if the source is in motion relative to 
the observer. This ability to determine motion can help diagnose narrowing of blood vessels, clogged arteries, and fetal 
heartbeats. It is also useful in determining if a structure in the body is fluid-filled (like a cyst) or a more dense mass such 
as a tumour.

Figure 2-5 Although ultrasound may be 
better known for its use in prenatal care, 
it is also an effective diagnostic tool for 
blood and fluid-related problems. In a 
very specialized technique using dedicated 
equipment, ultrasound may also be used to 
detect osteoporosis. Ultrasound does not have 
the potential harmful side effects of radiation 
exposure possible from x-ray, CT, and  
PET scanners.

Figure 2-6 An ultrasound image is best 
analyzed in real time as the image changes 
on the monitor. A technician uses the real 
time images to determine whether heartbeats 
are normal, to analyze the regularity of 
blood flow, and to determine whether fluids 
and tissues are abnormal. Still images from 
ultrasound, in certain particular instances, 
are studied to analyze abnormalities in bone 
density or fluid flow.



Figure 2-8

internet activity
The Visible Human Project ®: www.nlm.nih.gov/research/visible/visible_human.html

Explore what’s available at “A Guided Tour of the Visible Human” website. This is the effort 
of over a decade of cross-sectional CT and MRI scans of both male and female cadavers 
compiled for access online to both students and teachers. The Visible Human Project® is part 
of the U.S. National Library of Medicine’s long-range plan to create “complete, anatomically 
detailed, three-dimensional representations of the normal male and female human bodies.” 
Note that this website does not show abnormalities or diseases on the CT and MRI scans, but 
it does provide detailed 3D images of healthy humans.

www.dhpc.adelaide.edu.au/projects/vishuman2/VisibleHuman.html

(Java Applet—you decide what cross-section of the Visible Human you want to see!)

www.uchsc.edu/sm/chs/browse/browse_m.html (Male–clickable)

www.uchsc.edu/sm/chs/browse/browse_f.html (Female–clickable)
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Barium Enemas and Colonoscopy

The diagnosis of cancer and other diseases of the colon are usually aided by using an isotope of barium. A barium enema 
procedure involves injecting a barium sulphate fluid into the patient’s lower digestive tract. While the patient clenches the 
anal muscles, the colon is slowly filled with this liquid. Once that is done, air is injected into the colon to inflate it. The 
procedure allows for a greater contrast in soft tissues around the gastrointestinal tract when an x-ray radiograph is taken. 
If a patient is required to undergo a barium enema, fasting and laxatives are prescribed up to two days in advance of the 
procedure to ensure that the colon is empty and the x-ray image is not blocked by partially digested food particles.

Another diagnostic procedure that can be used instead of barium enemas and x-rays is to obtain a colonoscopy. In this 
procedure, a small camera at the end of a long flexible tube, called an endoscope, is inserted into the patient’s lower 
digestive tract (via the anus) and is slowly pushed further into the colon right up to the junction of the large and small 
intestines (at the caecum). Real-time imagery is observed on a television screen or monitor, allowing doctors to pause and 
examine questionable areas. The flexible tube contains fibre optic light and miniature diagnostic tools for obtaining tissue 
samples as well. As with the barium enema, patients who participate in this procedure undergo a fasting and laxative 
regimen two days in advance to ensure an empty colon for observation.

Check out the online colonoscopy activity at www.insidestory.iop.org/insidestory_flash1.html

Did You Know…
Canadian Isotope Production

Producing isotopes for use in medicine was a field pioneered in Canada. Two hospitals in 
Saskatchewan and Ontario became the first to apply radioactive cobalt to the treatment of 
cancer in the early 1950s, a technique now widely used around the world. Today the National 
Research Universal reactor (NRU) in Chalk River (Ontario) is the world’s main source for both 
cobalt-60, a high-activity radioisotope used for cancer treatment, and technetium-99, used for 
diagnostic imaging, as well as many other isotopes. 

The range of isotopes produced at NRU are distributed across Canada and internationally by 
MDS Nordion, the world’s largest medical isotope supplier. Periodically, due to unplanned 
reactor shutdowns, the world supply of needed medical isotopes from the Chalk River facility 
has been strained or stopped altogether. On occasion, the very short half-life of certain  
radioactive isotopes (e.g. fluorine-18) raises particular problems, as these have only hours or 
days of effective use in such applications as PET scans. How might such a concentration of 
production constitute a risk to ongoing treatment programs for patients around the world? 
Might you be able to offer a solution to this dilemma?
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Medical Isotopes

An isotope of an atom is another atom with the same atomic number but a different mass 
number. In other words, the two different atoms have the same number of protons and 
electrons, but the number of neutrons in each nucleus varies. The differing number of 
neutrons in the nucleus can make the atom unstable, and then the isotope has the ability 
to release energy in the form of photons or particles. It is these unstable, particle-releasing 
isotopes that are useful in medical procedures. 

We have seen in the previous chapter that contrast agents (which are not radioactive) can be 
used with some forms of diagnostic technologies. These contrast agents can improve scan 
results and show more details than without their use. CT scanners can be used in conjunction 
with a barium contrast agent. This chapter has described the use of the contrast agent 
gadolinium alongside MRI technology to produce better images.

Some forms of diagnostic technologies can be coupled with the use of a medical isotope, 
sometimes referred to as a radiotracer or radiopharmaceutical. Using radiotracers alongside 
technology can also improve scan results and allow the technician to focus on details of 
certain organs, tissues, or even bone structure. We have seen in Chapter 1 how there are 
four isotopes used in conjunction with PET scanners (oxygen-15, nitrogen-13, carbon-11 and 
fluorine-18). 

Each radioactive isotope used in a medical procedure is chosen for its half-life, its ability to 
be injected or ingested, and its risk potential for side effects (having little to no side effects is 
the goal). The use of these isotopes can allow for detection of diseases or tumours weeks or 
months in advance of using the diagnostic technologies alone.

The following is a chart of the different types of radioisotopes used in diagnosis, or treatment, 
of illness.

Isotope Half-life Uses

Arsenic-74 17.9 days Locate brain tumours

Barium-131 12.0 days Detect bone tumours

Carbon-14 5730 days Treat brain tumours

Chromium-51 27.8 days Determine blood volume

Cobalt-60 5.26 years Treat brain tumours

Fluorine-18 109 minutes Ideal for PET scans

Gold-198 64.8 hours Test kidney activity

Iodine-131 8.05 days Treat thyroid problems; find blood clots

Iron-59 45.6 days Test rate of blood cell production

Mercury-197 65.0 hours Find brain tumours; test spleen function

Technetium-99 6.0 hours Detect brain tumours; detect blood clots
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Concept Map

Sometimes a picture that shows the connections amongst all the vocabulary works better than 
forming categories to sort the words. Create a concept map for RADIATION (like a spider-
web that shows how the concepts are interconnected) to link the diagnostic technologies and 
techniques vocabulary together.

Figure 2-11

This simple example of a concept map shows how the individual thought of the words and 
concepts within the larger topic of Electricity. Inter-connections between concept “bubbles” are 
labeled with a word or a phrase to show how the two concepts are related.

activity

In The Media…
Cobalt-60 and the Canadian Connection
Before 1947, radium was considered the best available option for treatment of cancerous 
tumours. Doctors and treatment specialists realized, though, that radium had limitations 
when it came to deep-seated tumours in the body. But it was because of an uniquely 
Canadian research group that cobalt-60 quickly became the isotope of choice for treating 
cancer patients. Radium was effective only when in direct contact with cancerous tissue—
cobalt-60 allowed treatment specialists to create “cobalt bombs” which would attack 
cancerous growths almost anywhere in the body. By 1951, treatments were being tested in 
Saskatoon. Eldorado Mining and Refining, a Crown Corporation that owned and operated 
many of Canada’s uranium mines then, quickly retooled MDS Nordion, its radium sales 
department, to handle the high demand for cobalt-60 worldwide, positioning Canada as a 
world leader in isotope production and delivery.

Figure 2-10  

Canadian researchers and 
the equipment needed to 

create quantities of the  
cobalt-60 isotope.

Comparing Diagnostic Technologies and Techniques
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Figure 2-13

CASE STUDY CONTINUED: Francine’s Diagnosis
After the technician and the doctor discussed the results of the CT and MRI imaging, 
Francine’s doctor shared the information with her. The MRI showed that the spinal cord 
had slight abrasions on it due to the bone fragments grinding against it. Thankfully, the 
spinal cord had not been severely damaged. The CT scan clearly showed where the bone 
fragments were, and the doctor was confident that with careful surgery, they could be 
removed. 

The MRI showed one more unexpected result—a tumour on the thyroid gland at the base of 
Francine’s neck. Francine was informed that there were various treatment options available 
to her, including surgical removal of the tumour. She would be provided with details on the 
various options, and her doctor assured her that with treatment, this isolated growth could 
be removed completely and most likely without recurrence.

Career Moves…
Health Physicist   
As a health physicist, you participate in both protecting humans from the harmful effects 
of technologies using ionizing radiation while encouraging its beneficial uses. Career 
opportunities exist in any field or industry using such technology—nuclear reactor energy 
plants, research laboratories, hospitals, and defence plants. Typically, health physicists also 
perform work as environmental consultants for both government and industry when issues 
such as decontamination and decommissioning of reactors are required. 

Career Connection Website – Manitoba Career Profiles:
mb.jobfutures.org/profiles/profile.cfm?noc=2111&lang=en&site=graphic

Figure 2-12
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Terms of Interest:

atomic number gadolinium

barium HACE 1 gene

cobalt-60 isotope

colon MRI (Magnetic Resonance Imaging)

colonoscopy magnetic field

Doppler Effect mass number

electromagnetic field (EMF) radiofrequency coil

endoscope radium

enema transducer

fibre optic light ultrasound

Chapter 2 Review: Concepts and Terms

Concepts: MRI (magnetic resonance imaging) uses high frequency magnetic fields to produce 
detailed images of organs, soft tissues, and bones—more detailed than x-ray or CT scans. This 
diagnostic technology is not dependent on radiation to create images.

Ultrasound imaging uses ultrasonic sound waves to diagnose various conditions involving 
biological functions. Sound waves converted into electrical pulses are transformed by a 
computer into an image on a monitor.

Two different diagnostic procedures used to analyze the colon were discussed in this chapter: 
barium enemas and colonoscopy. An enema involves injecting a barium sulphate contrast 
agent into a patient’s anus to create a more detailed x-ray of the region. A colonoscopy 
involves inserting into the anus, and up into the colon, a long flexible tube with a small 
camera at the end of it.

An isotope of an atom is another atom with the same atomic number but a different mass 
number. Medical isotopes, sometimes called radiotracers or radiopharmaceuticals, can be used 
alongside technology to improve scan results and allow the technician to focus on details of 
certain organs, tissues, or even bone structure.
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chapter 3 
Effects of Radiation on Humans
CASE STUDY CONTINUED: Francine Has More Questions
Francine had gone through various diagnostic procedures, confirming not only a neck injury 
involving two fractured vertebrae, but a thyroid tumour as well. Francine asked her doctor 
whether her neck injury had caused the tumour to grow. The doctor said that was not the 
case. The MRI merely picked up something that was already there before the injury occurred. 
Francine was lucky to have had the MRI when she did, because the tumour otherwise may 
not have been discovered in time to prevent metastasis (spreading to other regions of the 
body). The doctor told Francine that once treatment was complete, regular thyroid checkups 
using ultrasound (shown in Figure 3-1) would be necessary. Though Francine knew she 
would have many questions about the types of treatment available and the technology used 
for ongoing checkups, she first wanted more details on what effects the CT and x-ray scans 
would have on her for the long term. The MRI did not involve radiation, but the other two 
diagnostic procedures did. “What exactly was this ionizing radiation all about?” she inquired 
within herself. 

Non-Ionizing Radiation
Any type of electromagnetic radiation that does not carry enough energy to ionize an atom 
is called non-ionizing radiation. An atom becomes ionized when it loses or gains an electron. 
Ionizing radiation causes a chemical change and thus causes more damage than non-ionizing 
radiation. Still, observable effects can be tracked from non-ionizing radiation.

Visible light, infrared light, microwaves, and radio waves are some examples of non-ionizing 
radiation. The light from the sun that reaches Earth is largely non-ionizing radiation, yet some 
ultraviolet rays (which have the ability to ionize) do reach the surface of Earth as well.

Infrared or laser light can cause burns to skin and damage to eyes, depending on the levels 
of energy they carry. Laser light energy levels can also be controlled to avoid skin and eye 
damage. Typical household laser pointers are designed to do no damage to skin. Microwaves 
carry enough energy to heat surfaces, which is why they are used in microwave ovens. Some 
sources say that the energy levels found near low-frequency electrical fields by power lines 
can cause nerves and muscles to respond erratically. 

Figure 3-1

Did You Know…
Many people have concerns concerns about the safety 
and use of commercially-available laser products. 
These include DVD players, smoke detectors, being 
near laser light shows, and laser pointers. A common 
fallacy is that laser light is in fact amplified sound 
waves, and constitutes a form of ionizing radiation that 
can do harm even at the cellular level of tissues. This 
false reasoning can result in an unwarranted fear of 
lasers. The better choice is to use laser light under safe, 
controlled conditions and that means finding out more 
about the physics behind laser phenomena as a good 
first step.

Figure 3-2
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Figure 3-3
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Ionizing Radiation

The nucleus of an atom can decay or transform releasing energy in the form of either particles 
or waves. Alpha decay occurs when the nucleus of a radioactive element, such as uranium, 
uses the strong nuclear force to release an alpha particle. Alpha particles occur naturally, yet 
have enough energy to participate in nuclear reactions. Alpha particles are exactly the same 
as helium nuclei, containing two protons and two neutrons each.

When an unstable atom spontaneously decays or transforms, its nucleus releases a beta 
particle and a neutrino. The beta particle can be either a positively charged particle (positron) 
or a negatively charged beta particle similar to an electron. The neutrino released is 
electrically neutral. This process of beta decay occurs when the nucleus of an atom has either 
too many protons or too many neutrons. The weak nuclear force then causes a neutron to be 
converted into a proton (or vice versa) in order to become stable. In general, beta particles 
are a form of ionizing radiation. There are some low-energy beta particles that do not cause 
ionization, however.

Gamma radiation is a form of ionizing radiation, and thus produces a chemical change in the 
substance through which it passes. Elements with high atomic numbers such as lead have the 
density to be able to absorb gamma rays and prevent them from penetrating. Note, however, 
that attenuation coefficients can vary with atomic number. Researchers need to take into 
account more than just atomic number to determine whether an element will block gamma 
rays. 

All forms of ionizing radiation can destroy or cause damage to DNA in cells. Large doses of 
ionizing radiation have been shown to cause mutations in radiation victims’ descendants.  
Dr. David Boreham, of McMaster University, believes that low levels of ionizing radiation 
may help protect cells against DNA damage from other causes and help decrease cancer 
risk. His ideas are controversial and are based on studies done on laboratory mice. Most 
radiation researchers do statistical analysis of cancer victims from such catastrophic events as 
the Hiroshima and Nagasaki atomic bombs, the Three Mile Island disaster, and the Chernobyl 

Cancer Connection…
Ultraviolet Radiation
In Canada, sunlight is strong enough to cause premature aging of the skin and skin cancer. 
As the ozone layer becomes thinner due to increasing levels of pollution and chemicals, it 
protects us less from harmful UV rays and we are exposed to more of them. Thankfully, the 
production of ozone-thinning chlorofluorocarbons was banned in 1996, helping to protect the 
ozone layer.

There are three types of UV rays:
•	 Ultraviolet A rays (UVA) form most of the sun’s natural light. They can penetrate deep into 

the skin and cause wrinkles and aging. 
•	 Ultraviolet B rays (UVB) cause the most damage to our skin. They are the main cause of 

sunburns as they are nearly 1000 times stronger than UVA rays. 
•	 Ultraviolet C rays (UVC or short-wave radiation) never reach the earth’s surface: the 

atmosphere filters them out. 
UV rays cannot be stopped by haze, fog or clouds. Water, sand, concrete and especially 
snow can reflect, and sometimes increase, the effect of the sun’s burning rays. The head, 
face, neck, hands and arms are areas that are typically left uncovered. It is in these uncovered 
areas where most skin cancers start. Your risk of getting skin cancer increases if you have 
had several blistering sunburns as a child; if you regularly work, play, or exercise in the sun 
for extended periods of time; if you have light-coloured skin, eyes and hair; or if you take 
medication that makes you more sensitive to UV light (such as birth control pills).
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Substance μ Substance μ

Carbon 0.0244 Cadmium 0.035

Aluminium 0.0264 Uranium 0.0459

Water 0.0284 Lead 0.436

Sodium Iodide 0.0350

Figure 3-4  
The relationship between types of radiation and the electromagnetic spectrum is shown on the 
chart above.

disaster. Boreham wishes to challenge the notion that sweeping conclusions can be made 
solely on large-scale radiation dosage statistics.

There is a way to mathematically determine the amount of gamma radiation a substance will 
absorb: the probability of absorption is proportional to the thickness of the substance. This 
relationship can be expressed as a formula:

Gamma Radiation Absorption Equation:           I(d) = I
0
 e-μd 

In this equation, I
0 
represents the original number of gamma rays (or incident intensity), I(d) 

represents the number of gamma rays which do pass through a substance of thickness d 
(measured in cm), e is the mathematical constant 2.71828183 and μ is the linear absorption 
coefficient. The linear absorption coefficient is a measure of how effectively gamma radiation 
passes through a material, and will be a function of the kind of material used to block gamma 
rays. In particular, it strongly depends on the material’s density. That is why lead has such a 
high value when compared to aluminium, and so is a good protective layer for the body in 
blocking the penetration and transmission of ionizing radiation.

Source: The American Physical Society. “Gamma Ray Absorption Coefficients at 6.13 MeV.”  Physical Review Online Archive 
7 September 1954. 29 July 2008 www.prola.aps.org/abstract/PR/v96/i6/p1563_1
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Practice Questions: 

1  Compare the number of non-absorbed gamma rays for a substance with a thickness of 30 
cm, and absorption coefficients of 0.000025 for an energy level of 1000 keV and 0.00027 
for an energy level of 120 keV.

2  If a substance that is 10 cm thick has 35 times as much gamma radiation passing through 
it when the rays carry 90 keV compared to 30 keV, determine the absorption coefficient 
for the higher energy gamma ray scenario. Assume μ = 0.018 for 30 keV.

Reality Check…
Question | Does radiation have a green glow?

Origin: Comic book “logic” encourages us to believe that if you are exposed to radiation, you 
have a green glow and you become radioactive. Perhaps this stems from the early part of the 
20th century, when green glow-in-the-dark watches contained paint that was radium-based. 
Factory workers who spent many months on the job licking their paintbrushes to form a tip 
sharp enough to paint the tiny numbers on watch faces eventually suffered from radiation-
related illnesses.

Reality: The radium-based paint used for those early 20th century watches contained a 
phosphor (a transition metal element with glow-in-the-dark properties) that caused the green 
glow. Radium is both phosphorescent and radioactive, but phosphorescence is what causes 
the glow. Humans can only register a small portion of the electromagnetic spectrum through 
sight—the visible light spectrum. Radiation, in all its forms, falls nowhere near that section of 
the spectrum (with either wavelength or frequency). So, unless the human eye is genetically 
manipulated to be able to register wave interference from alpha, beta, gamma or x-rays, we 
will never be able to see a “radioactive glow”…green or otherwise! 

Sample Calculation:

A worker has just been irradiated with gamma rays. HazMat teams are on hand to determine 
whether the levels of radiation were high enough to cause long-term damage. They base their 
calculations on the assumption that the gamma rays carried 100 keV of energy.  At this energy 
level, μ=0.1692. If the arm muscle of the potentially injured worker is 4 cm thick, compare 
how much gamma radiation passes through this muscle to a situation where the worker was 
exposed to x-rays whose energy levels were 30 keV and thus μ=0.3651.

Solution:
First scenario:  I(d) = I0 e

-μd

 I(d) = I0 e
(-0.1692x4) = I0 (0.5082)

Second scenario: I(d) = I0 e
-μd

I(d) = I0 e
(-0.3651x4) = I0 (0.2321)

0.5082/0.2321 = more than twice as much gamma radiation passes through the worker in first 
scenario compared to the x-radiation in second scenario.
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Figure 3-6 
Nagasaki, August 1945

Did You Know…
Hiroshima and Nagasaki, Japan and WWII

On August 6, 1945, the first atomic bomb was dropped on Hiroshima, Japan by the United 
States. Three days later, another atomic bomb was dropped on Nagasaki. The devastation that 
was caused by the bombs was far-reaching. Both cities were reduced to ashes and rubble. 
Thousands of people were killed instantly by the blasts. Doctors who survived the blast and 
attempted to treat surviving victims were overwhelmed by the magnitude of the injuries. 
A PBS documentary titled “The Day After Trinity” includes interviews with the scientists 
who participated in the construction of the atomic weapons, and explains the nature of the 
widespread radiation sickness caused by these explosions.

One day after the Nagasaki bombing, photographer Yosuke Yamahata began to record the 
devastation in photographs. A painter and a writer traveled with him on this odyssey, recording 
their reactions. Fifty years after the journey began, these memories in pictures and print are 
displayed on the Internet for all to see and remember. It is worth your while to ponder this event 
in world history, and discuss it with friends.

NAGASAKI JOURNEY can be found at www.exploratorium.edu/nagasaki/index.html

Somatic Effects

Radiation damage to living organisms is divided into two categories: somatic and genetic.  
Somatic damage by radiation is damage to any part of the body except the reproductive 
organs. Somatic damage directly affects the individual exposed to the radiation, and does 
not deal with after-effects in future generations. Skin that is damaged by excessive radiation 
radiation exposure may develop cancer later on. Irradiated bone marrow can cause anaemia 
(low red blood cell count) and therefore fatigue and muscle weakness. Poor digestion and 
absorption of nutrients can stem from an irradiated gastrointestinal tract. Large doses of 
radiation cause hair loss and dryness of skin. Over time, large doses of radiation can cause 
cancer and the formation of cataracts on the lenses of the eyes. The risk of developing these 
types of somatic damage is usually consistent with the level of exposure to radiation beyond 
a certain threshold amount.

Genetic Effects

Radiation that causes genetic damage directly damages the reproductive organs, and therefore 
affects any offspring that individual may have after the damage has occurred. Radiation 
damage is done to genes and chromosomes, which can be passed on to future generations. 
Studies of survivors of the Hiroshima and Nagasaki bombings and of the Chernobyl survivors 
in Ukraine have shown that there are increased rates of stillbirths, miscarriages, and infant 
deaths. If the children survive past the first few years of life, they tend to develop leukemia or 
microcephaly (slower cranial development), have birth defects (limbs missing, large growths), 
or mental impairments.

If exposure to radiation was not acute, then genetic effects may be minor or may not appear 
at all. However, Health Canada acknowledges that exposure to even minute doses of 
radiation from medical procedures such as x-rays or CT scans can have repercussions on the 
unborn fetus and therefore it is recommended that no procedures involving ionizing radiation 
be performed during pregnancy.
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Cancer Warrior

www.pbs.org/wgbh/nova/cancer/program.html

Originally broadcast in February 2001, the one-hour NOVA documentary entitled “Cancer 
Warrior” can be viewed entirely online. The program follows Dr. Judah Folkman of the 
Children’s Hospital in Boston, who spent more than 30 years researching ways to curb 
cancer by cutting off the blood supply to tumours. Follow the growth of a malignant 
tumour from its origin as a single cell until it becomes grape-sized. Learn about the ground-
breaking discoveries Folkman and his research team made over the years. Though Folkman 
died in January of 2008, his research forms the basis for many new projects on the cutting 
edge of cancer research.

In The Media…
“Fat Man and Little Boy” – the Winnipeg Connection
In 1989, Paramount Pictures released the movie Fat Man and Little Boy, which re-enacts 
the Manhattan Project. The Manhattan Project was a secret wartime initiative that the U.S. 
government set up (primarily at Los Alamos in New Mexico) with the purpose of creating the 
world’s first atomic bomb. More than 6000 scientists and engineers were involved in the effort 
in laboratories across the United States.

One of the lead characters in the drama, Michael Merriman, is played by John Cusack. 
Though the movie makes no mention of it, this character is based on an actual, real-life 
scientist from Winnipeg. Louis Slotin, a Manitoban and one of a few Canadians participating 
in the Manhattan Project, was born in 1910. He obtained science degrees at the University of 
Manitoba, winning gold medals for both physics and chemistry.

One of his duties as part of the Los Alamos research team was to perform experiments with 
uranium and plutonium cores, determining their critical masses. While performing one of 
these experiments on May 21, 1946 (almost a full year after the bombings of Hiroshima 
and Nagasaki), Slotin was involved in a serious accident that occurred in his laboratory that 
released massive quantities of radiation into the surroundings. Others of the research team 
were nearby. Nine days after the accident, Slotin died of his injuries derived from a massive 
radiation dose. Posthumously, he was praised for his own, selfless actions that prevented the 
death of his colleagues. His family has set up a monetary award for researchers that use safe 
laboratory procedures.

The Story of Manitoba’s Radiation Physicist - Louis Slotin
The Canadian Nuclear Society has an archive publication available that provides a very 
readable and understandable account of the scientific life and contributions of Winnipegger 
Dr. Louis Slotin. Thankfully, a reviewer of this site has taken the time to clear up a few errors 
that have surrounded the criticality incident that claimed Slotin’s life.

Check it out at: www.cns-snc.ca/history/pioneers/slotin/slotin.html

Questions: 

1  How accurately does the movie portray the criticality incident? 
2  How accurately does the movie portray Louis Slotin?

Figure 3-7   
Plaque at the original 

atomic bomb test site in 
New Mexico
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Francine’s Case Study Continued

After doing some research, Francine was reassured that though her x-ray and CT scan 
involved radiation exposure, there would be no long-term somatic or genetic effects. Had she 
been pregnant, the unborn foetus may have been affected – but her doctor would not have 
performed the diagnostic procedures in that case. Her next step was to obtain a biopsy of the 
tumour to determine whether or not it was cancerous. A surgeon would remove a small piece 
of it for laboratory analysis.

Energy absorbed

Mass of absorbing material

See Chapter 5 page 41 
for a chart of examples 
for both natural and 
synthetic (human 
produced) radiation.

EXTENSION: Units of Measurement - A Historical Approach

Because ionizing radiation can cause biological damage to both the person exposed to it 
and to the offspring of that individual, scientists have devised ways to quantify radiation. 
There are three main measurement methods used: exposure, absorbed dose, and biologically 
equivalent dose.

Exposure measures the amount of ions produced by x-rays or gamma rays in air. It was 
the first radiation method to be defined, with the unit of measurement named after one 
of the scientists studying radiation effects. Though the roentgen (R) is still used today, the 
Systeme Internationale (SI) unit of measurement for exposure is defined as coulombs per 
kilogram (C/kg). This unit stems from the method of measurement, whereby a beam of 
x-rays or gamma rays is sent through a given mass (kg) of dry air at standard temperature and 
pressure. This beam produces positive ions with a total measurable charge (C). To convert 
from roentgens to coulombs per kilogram:

Exposure (in roentgens) =  2. 58x10-4m

In other words, 1 R = 2.58x10-4 C/kg

The units of measurement for exposure do not connect radiation effects to living tissue, 
however. For living tissue, absorbed dose is the energy absorbed from radiation per unit of 
mass of absorbing material (or living tissue):

Absorbed dose = 

The SI unit for absorbed dose is the gray (Gy), which is equivalent to joules per kilogram 
(J/kg). Another unit, not part of the Systeme Internationale, is the rad (rd). The word “rad” 
stands for radiation absorbed dose. To convert from rads to grays, 1 rad = 0.01 gray

Questions: 

1  What is standard temperature and pressure? How might the amount of ionization in air 
due to radiation change as temperature increases? How might the amount of ionization in 
air due to radiation change as pressure increases?

2  In human tissue, one Roentgen of gamma radiation exposure results in about one rad of 
absorbed dose. Why is this number (1 rad) an approximation?

The absorbed dose unit was an improvement on the exposure units developed earlier, 
however researchers soon realized that the amount of damage to living tissue by ionizing 
radiation varied with differing forms of radiation. The absorbed dose units gave no indication 
of those differences. To compare damage caused by different types of radiation, the relative 
biological effectiveness (RBE) or quality factor (QF) is used.



The dose of 200 keV x-rays that produces a certain biological effect

The dose of radiation that produces the same iological effect
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The relative biological effectiveness of a specific form of radiation compares the dose of 200 
keV x-rays needed to produce a certain amount of damage to the dose of the specific form of 
radiation needed to produce the same amount of damage: 

Relative biological effectiveness (RBE) =

The RBE depends on the type of ionizing radiation and its energy, as well as the type of 
tissue being irradiated. The RBE for gamma rays and negative beta particles (electrons) is 1, 
whereas the RBE for protons is 10. The larger RBE value for protons indicates that more tissue 
damage is done than by gamma rays or beta particles. Alpha particles, protons, and neutrons 
all have larger RBE values than gamma rays and beta particles.

Sometimes, the RBE and the absorbed dose in rads are combined to form what is called the 
biologically equivalent dose:

Biologically equivalent dose =     x     RBE

The unit of measurement for the biologically equivalent dose is the rem, “short for roentgen 
equivalent, man”. Occupational radiation exposure is measured in rems. Typically, there are 
no observable biological effects if an individual is exposed to up to 25 rems of radiation. 
(Note that there are government-imposed limits on the amount of radiation workers are 
exposed to in the workplace – no more than 5 rem is allowable.)  To gain some perspective 
on the rem and the millirem (1/1000th of a rem), here are some statistics: you can increase 
your total amount of exposure to radiation by one millirem by watching an average amount 
of television for one year. That is the same amount of radiation you would receive by going 
on a coast-to-coast flight.

The SI unit for biologically equivalent dose is the Sievert (Sv). One Sievert equals 100 rem.

If exposure to radiation occurs over a period of time, then this exposure is expressed as a 
dose rate, measured in millirems per hour (mrem/hr).

Research Questions:

1. Fiestaware was a popular style of dishes in the 1960s. However, we now know that 
Fiestaware releases low levels of radiation. Research why, and how much radiation (in 
rems) is released.

2. How many rems of radiation was Switzerland exposed to when the toxic cloud of 
radiation blew over their country from the Chernobyl event in Ukraine?

Absorbed dose
(in rads)
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Figure 3-8

Figure 3-9

Calculation Questions: 

1  An individual is exposed to the following forms of radiation: 20 mrad of gamma rays, 
35 mrad of electrons, 10 mrad of protons, and 5 mrad of slow neutrons (RBE = 2).  
Rank the types of radiation from highest to lowest, according to their biologically 
equivalent dose.

2   If an individual is exposed to two different types of radiation where the absorbed doses 
are the same but RBEs are different, which type of radiation—the one with the larger RBE 
or the smaller RBE—will cause the greater damage?

3  The typical biologically equivalent dose for a chest x-ray is 2.5x10-2 rem. If the mass of 
exposed tissue is 19 kg and the energy absorbed is 5.9x10-3 J, what is the RBE for this type 
of radiation on chest tissue? How does this compare to the RBE for gamma rays?

4  If you stand in an area where the dose rate for an unknown source of radiation is 
40 mrem/hr for half an hour, what would your total dose of radiation be? If this radiation 
was aimed at your chest (as in question #3), with the same mass of exposed tissue and the 
same amount of energy absorbed, what is the RBE for this unknown source of radiation?

Units of Measurement...…another approach

Imagine you are standing outside in the rain. If we were to use SI units for radiation and 
radioactivity and connect them to something about the rain:

•	the	number	of	dust	particles	that	become	raindrops	would	be	comparable	to	exposure,	
measured in coulombs per kg          

•	the	amount	of	rain	hitting	you	would	be	like	the	absorbed dose, measured in grays 
•	how	wet	you	get	would	be	like	the	biologically equivalent dose, measured in Sieverts

CASE STUDY CONTINUED: Francine’s Surgical Procedures
The surgery to remove the two bone fragments was a success. Though Francine was quite 
tired from the whole ordeal, she knew she was one step closer to being completely healed. 
The biopsy of the tumour was done while she was in surgery for the bone fragments, and 
she soon found out from her doctor that the results were indeed malignant (cancerous). Now 
she needed to discuss treatment options and potential side effects with her doctor.

Career Moves…

Environmental Consultant   
Career opportunities exist in any field or industry using radiation technologies—nuclear 
reactor energy plants, research laboratories, hospitals, and defence plants. Environmental 
consultants perform work for both government and industry to ensure that standards are 
maintained that will protect both the environment and the population. When issues like 
decontamination and decommissioning of reactors are required, environmental consultants 
are there to ensure that adequate procedures are followed with both cleanup and storage of 
waste materials. 

Career Connection Website – Eco Canada: www.eco.ca
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Terms of Interest:

absorbed dose microcephaly

absorption coefficient (μ) neutrino

biologically equivalent dose non-ionizing radiation

dose rate quality factor (QF)

gamma radiation radiation absorbed dose (rad)

genetic damage relative biological effectiveness (RBE)

gray (Gy) roentgen (R)

incident intensity (I0) roentgen equivalent, man (rem)

metastasis sievert (Sv)

somatic damage

Chapter 3 Review: Concepts and Terms

Concepts: Electromagnetic radiation that does not carry enough energy to ionize an atom is 
called non-ionizing radiation. Examples of this are visible light, infrared light, microwaves, 
and radio waves.

When the nucleus of an atom decays, energy is released in the form of either particles 
or waves. Both alpha decay and beta decay release particles (alpha particles, and either 
positrons or beta particles, respectively). Both methods release ionizing radiation. Gamma 
radiation is a form of ionizing radiation that produces a chemical change in the substance 
through which it passes.

This chapter included mathematical extensions into how to calculate the amount of gamma 
radiation a substance will absorb, as well as a foray into the historical progression of units of 
measurement and their relationships. Somatic damage is any damage caused by radiation to 
the human body other than to the reproductive organs. Genetic damage is radiation damage 
caused to the reproductive organs.
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chapter 4 
Radiation and Treatment
CASE STUDY CONTINUED: Francine’s Treatment
The doctor explained to Francine that she would have to participate in regular checkups after 
the surgery to track the healing process and to make sure that the cancer did not return. She 
had been reassured that there would be no genetic effects (future children she may have 
would not be affected by the radiation treatments), unless she was currently pregnant. The 
total amount of radiation she had already been exposed to from her x-rays and CT scan were 
also considered as minimal in comparison to the treatment options. Francine asked questions 
and listened carefully to the answers given on the two treatment options the doctor had 
described: radiation, or surgery along with radiation.

Figure 4-1

History of Radiation Treatment

The discovery of x-rays in 1896 eventually led to their use for cancer treatment by 1899. In 
that year, the literature reported that skin cancer had been cured on an individual with the 
use of x-ray treatments.

In the early days of using radiation as treatment, radium was the source of choice. Dosage 
calculations were impossible because there was not enough known about radium and the 
amount of radiation it emitted. Only superficial cancers could be treated with this limited 
knowledge and “rough-edged” technology. During this time, there were many reported 
incidences of tissue damage, recurrence of cancers, and death resulting from radiation 
treatment. Perhaps much of the fear surrounding radiation treatment today stems from these 
early days of misunderstood and uncontrolled methods.

By the late 1920s, a unit of measurement for dosage had been established. Physicians 
changed their techniques, from delivering one massive dose of radiation to delivering daily 
smaller quantities of radiation to the site that needed treatment. Though treatment did extend 
patients’ lives somewhat, there was still not significant enough a rate of survival to warrant 
confidence in techniques or technologies. Further research into methods and equipment was 
needed, with technologies that could deliver higher energy levels of radiation. 

Soon after World War II had ended, radioactive cobalt-60 (synthetically produced from 
the stable isotope, cobalt-59) replaced radium as the radioactive substance of choice for 
treatment. Canada played a lead role in this new era of nuclear medicine. Technologies were 
developed to create mega-voltage outputs of energy and to deliver treatments. With higher 
energy levels came the ability to target cancers below the skin’s surface, decreasing the severe 
skin reactions of the past. With the advent of the computer age, dosages could be calculated 
with speed and accuracy, and radiation energy could be delivered to targeted areas with 
limited to no damage of healthy cells. Physicians and medical physicists soon began clinical 
trials, to create a database of information to allow for more informed opinions of treatment 
method choices.

Today, radiation treatments realistically give patients the ability to control and/or cure their cancer.

The Canadian Nuclear Association maintains a large number of online modules for student 
use that connect you to the world of the nuclear industry. If you have an interest in exploring 
more of the Canadian history in the field of nuclear medicine, check out:

cna.ca/curriculum and look for the links to “Nuclear Technology at Work” 
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A Personal Cancer 

Connection
Have you, or has 

anyone in your family 
or circle of friends, 

been diagnosed  
with cancer? 

What kinds of treatment 
did that individual  

go through? 

What kinds of side 
effects did they have? 

Did it affect their  
daily life? 

How has their struggle 
with cancer  

inspired you?
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Figure 4-2

Question: Is your water source chlorinated?

Figure 4-3

Did You Know…
Chlorinated Drinking Water and Cancer Risk

For the past few decades, researchers have been studying the link between chlorinated water 
and cancer. Most studies show that long-term usage of chlorinated water leads to a slightly 
increased risk of cancer, particularly bladder cancer. Currently, it is believed that the benefits 
of chlorination outweigh the slight increase in the risk of developing cancer.

Humans have been chlorinating water to make it safer to drink for over 100 years. Using 
chlorine to disinfect water and kill microbes has prevented many illnesses. In 2000, the 
improper care and treatment of well water in Walkerton, Ontario resulted in more than 2300 
illnesses and 7 deaths. Chlorine not only kills microbes at the treatment station, but its effects 
last as the water travels from the station to your tap, ensuring the safety of the water you 
drink.

Problems arise when chlorine reacts with plant matter that has not been properly removed 
from the water to be treated. Better filtration methods and more accurate determination of the 
amount of chlorine needed decrease risks associated with chlorination. 

Ultraviolet (UV) light treatment is currently being used in Winnipeg, Manitoba in parts of its 
water treatment system. This type of treatment is effective against most microbes, but is less 
effective when the water is murky. The effects of UV light treatment do not last from the 
station to your tap, so this type of treatment is still used in combination with chlorination for 
better results. 

Source: Author Unknown. “Chlorinated Water.”  Canadian Cancer Society 15 May 2008. 29 July 2008  

www.cancer.ca/ccs/internet/standard/0,3182,3172_372124__langId-en,00.html

Radioisotope Therapy

Radioisotope therapy works by using an isotope as a source of radiation. The radiation 
source is combined with technology that sends photons, electrons, neutrons, protons, or 
ion beams to damage the DNA of cells at the atomic level. Cancer cells generally reproduce 
more and faster than normal healthy cells. Cancer cells also have a lesser ability to repair 
cellular damage than do normal healthy cells. Thus, when DNA damage occurs through 
irradiation, this damage is inherited in the next generation of cells. Cancer cells either slow in 
reproduction or die altogether.

There are three main types of radiotherapy: brachytherapy, systemic radiation, and 
teletherapy. Each of these types of therapy has advantages and disadvantages, and is more 
suited for treating particular types of cancer.

Figure 4-3 A “seed” used in brachytherapy is smaller than a grain of wheat (pictured here) and 
thinner than pencil lead. Palladium-103, iodine-125, and cesium-131 are typical isotopes used in 
seed implants. These isotopes all emit a very low energy radiation. Nevertheless, patients are cautioned 
during treatment not to come into contact with pregnant women or children for the first few days, to 
ensure they are not exposed to radioactive decay.
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Figure 4-5

Internal Methods of Treatment: Brachytherapy

Brachytherapy is sometimes referred to as sealed internal radiation therapy, or implant 
therapy. Tiny radioactive pellets or seeds are implanted in a patient’s body, surrounding the 
cancerous growth. Brachytherapy is designed to deliver a concentrated dose on or near the 
tumour in a short amount of time. Anywhere from 40 to 60 implants or seeds may remain in 
the patient’s body or be removed after temporary treatment has occurred. Removal depends 
upon the type of cancer being treated. Temporary implants remain in the patient’s body from 
several hours to several days. During this time, the patient is isolated in a hospital room. 

Typically, anaesthesia is required to perform implantation. Most patients tend to feel little to 
no discomfort with brachytherapy. When implants are held in place with applicators there is 
some discomfort, but patients are able to return to their normal routines within a few days  
of treatment.

Cancer Connection…
Photodynamic Therapy

Within the past 8 years, a relatively new treatment for cancer has been developed—
photodynamic therapy. This process involves injecting the patient with a light-sensitive 
chemical. The chemical travels to the faster-growing cells within the body (cancerous cells). A 
laser is used to activate the chemical once it is residing in the cancerous growth (Figure 4-4), 
and the chemical then literally destroys cancerous cells. 

This technology is far less invasive or damaging than other techniques, is simple to use, but 
is still quite expensive. Photodynamic therapy works best with cancers of the skin, lungs, 
esophagus, brain, and bladder.

Question: 
Would there be complications if this technology were used to treat children?

Figure 4-4 
Above is actual radiograph 
showing the arrangement of 
radioactive pellets around a 
prostate cancer tumour.

Internal Methods of Treatment: Systemic Radiation

Systemic radiation therapy is also called unsealed internal radiation therapy. In systemic 
radiation therapy, the patient is given a radioactive drink, pill, or injection. The radioactive 
source travels throughout the body and collects at the spots where faster cell growth is 
occurring (cancerous cells). As time progresses, the radioactive source releases energy and 
decays, killing cancerous cells and leaving the body. This type of therapy is not painful. 
Radiation therapists discuss precautions the patient may need to take as the radiation leaves 
his/her body over the course of a few days. Until the high levels of radiation leave the patient’s 
body, (s)he may need to remain isolated in a hospital room.

Figure 4-6 Radioactive iodine capsules are sometimes given to patients to 
treat thyroid cancer. An increased incidence of thyroid cancers in Ukraine 
and the surrounding countries of Belarus and the Russian Federation has 
been linked by some researchers to the Chernobyl nuclear disaster of 1986. 
The population most affected by this increase were children at the time of  
the reactor explosion and fire and were living in close proximity to the  
Reactor #4 complex. Many scientists accept the position that if a potassium 

iodide pill had been given to people immediately after exposure to the radioactive fallout, the 
number of cases of thyroid cancer would have been dramatically reduced. Iodine concentrates 
itself in the human thyroid gland, and at a more rapid rate among growing children than 
adults.

Figure 4-6
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In The Media…
The Chernobyl Incident… Two Decades Later

In 1986, the world’s worst nuclear disaster of a civilian nature occurred in Chernobyl, Ukraine. On April 25, workers 
were preparing to shut down Reactor #4 for regular maintenance. They decided to perform a safety test of the electrical 
grid to determine if enough energy was there to keep the reactor core’s cooling system running. They turned off the 
emergency cooling system, and what occurred after that was a series of operational errors and results of design flaws 
that led to a power surge, a hydrogen and steam explosion, and the world’s largest nuclear disaster. 

Over the next few days, fallout dropped on Belarus, Ukraine, The Russian Federation, Poland, and Sweden. Sweden’s 
scientists were the first to alert the world of the disaster, as the Soviet Union at the time was remaining officially silent.                                                     

Two people died in the explosion and twenty-nine firemen died in the following week. The deaths of the firemen could 
have been prevented, as they were sent to the site without proper radiation protection. 

Today, long-term effects of the radioactive isotope release are still being studied. Children, both those who were near 
the site when the explosion took place and the following generation of children, have had a statistically significant 
increase in thyroid cancers. Nearly two thousand cases have been reported thus far. The ongoing list of diseases 
occurring among the more than 200,000 individuals sent to clean up the site is staggering  —more than 4,000 have 
died from radiation exposure, and more than 170,000 suffer from various chronic illnesses. These recovery operation 
workers received doses between 0.01 and 0.5 Gy (grays). This cohort is at potential risk of late consequences such as 
cancer and other diseases and their health will likely be followed closely for decades to come.

The last working nuclear reactor at Chernobyl was shut down in 2000. Though the damaged reactor and the ensuing 
rubble were quickly enclosed in a concrete and steel tomb, that structure is now crumbling. Ukraine hoped to 
complete the re-sealing of this tomb by the end of 2008.

Note: The photographs are by David McMillan of Manitoba, who first visited the Chernobyl Exclusion Zone in 1994, 
eight years after the accident.  

Source: Mulvey, Stephen. “The Chernobyl Nightmare Revisited.” BBC News 18 Apr. 2006. 29 June 2008  

news.bbc.co.uk/1/hi/world/europe/4918742.stm

Figure 4-7  A gymnasium near Chernobyl. Figure 4-8  A chemistry classroom in the “no go 
zone” near the Chernobyl site.
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Photographing in the Chernobyl Exclusion Zone

David McMillan

In 1986, because of poor design and human error, one of four reactors near the Ukrainian city of Chernobyl* 
exploded. The radioactive contamination was widespread, but it was considered so severe in an area extending 30 
kilometres around the damaged reactor that 135,000 people had to be evacuated. I became interested in visiting what 
became known as the Chernobyl Exclusion Zone after reading a 1994 magazine article about the area’s post-accident 
condition. After many telephone calls and faxes, I was able to gain entry and was allowed to photograph freely. I soon 
recognized that the subject was diverse and complex, offering the opportunity of making photographs that couldn’t be 
made anywhere else. I never expected to return more than once or twice, but after each subsequent visit, I discovered 
new possibilities which encouraged me to return. Within the millions of acres of the exclusion zone, there are fields 
left to lie fallow and cities and villages where the vestiges of the defunct Soviet Empire and the everyday remnants 
of the lives of the former citizenry remain. Superimposed on this is the proliferation of nature and the deterioration 
of the built environment – all blanketed with unseen radiation. Every time I’ve returned to photograph I’ve realized 
the subject is larger than my original conception. Within this area, virtually untouched by civilization since the 1986 
accident, there was a kind of change that was the result of the passage of time and the inexorability of nature. For the 
past several years, I’ve photographed almost exclusively in the city of Pripyat. Once home to 45,000 people, it was the 
largest population centre within the exclusion zone. It was built to house the workers from the nearby nuclear power 
plant, and several apartments were still under construction at the time of the accident. Pripyat has many schools, 
kindergartens, playgrounds, hospitals, and cultural facilities. The city was considered one of the finest places to live 
in the former Soviet Union, but it will never be lived in again. Although the geographical location for my work has 
become circumscribed, the photographic possibilities still seem rich and varied. 

David McMillan is a photographer who teaches at the University of Manitoba’s School of Art.  
As of 2008, he has photographed in the Exclusion Zone 14 times.

* The English translation of the Russian word is “Chernobyl.” Since Ukraine established its independence from the 
Soviet Union in 1991, the Ukrainian spelling is translated as “Chornobyl.” 
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to help you. Each 
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External Methods of Treatment: Teletherapy

Teletherapy, also known as external beam radiation therapy, uses a machine outside of the 
body to direct radiation at the cancer and surrounding tissue. This type of therapy is widely 
used to treat most types of cancer. A linear accelerator, or “linac,” produces a beam of high 
energy x-rays or electrons. A technician, in conjunction with an oncologist and a medical 
physicist, plans the size and shape of the beam as well as the amount of time the patient is 
exposed to the beam. 

Because this form of treatment uses an external source of radiation, surgery is not necessary. 
However, teletherapy may be combined with other forms of treatment such as brachytherapy 
(depending on the type of cancer).

Proton beam therapy is a similar treatment method, using protons instead of x-rays or 
electrons. The advantage of proton beam therapy is that it is easier to control the size and 
shape of the beam, reducing damage to normal healthy tissue surrounding the cancerous 
tissue. Not all hospitals have access to the equipment needed for this type of treatment, as it 
is more expensive than the classic teletherapy procedure.

Intensity Modulated Radiation Therapy (IMRT) is a particular kind of external beam therapy, 
which allows radiation to be shaped specifically to a tumour’s size and shape. Instead of 
one intense beam, the beam is broken up into smaller “beamlets,” with each smaller beam’s 
intensity individually adjustable. This increases the chance for a cure while decreasing 
damage to healthy tissues.

Francine’s Case Study Continued:

Francine and her doctor decided that it was impossible to perform surgery to remove the 
tumour. The tumour was not uniform, and chances were good that surgery would be 
unsuccessful to remove the tumour in its entirety. But what was the best option? Systemic 
radiation? Teletherapy? Some combination of both? Francine needed more information to 
make a more informed decision.

Figure 4-9  An image of the Clinac Linear Accelerator Treatment Machine. Note how the 
source of high energy beams rotates around the patient.
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Figure 4-10    
X-ray of a colon with a 
barium contrast agent 
injected

Reality Check…

Question | Is a barium enema dangerous?

Origin: A high level of discomfort is associated with a barium enema procedure. Placing 
radioactive liquid into an orifice in your body has led people to believe that this is dangerous 
to your health.

Reality: Barium is not radioactive. According to Health Canada, a barium enema, though 
uncomfortable, does not pose any significant health danger to the patient unless there is a small 
tear in the gastrointestinal tract. On rare occasions, the act of blowing air into the gastrointestinal 
tract during the barium procedure may cause a tear in the lining. If there is a tear in the lining, 
there is a chance of the barium sulphate liquid leaking into the intestinal area. If this occurs, 
surgery must be performed and antibiotics given to prevent infection. 

Rarely, a patient may experience constipation as a side effect after the procedure. Drinking lots 
of water will eventually take care of this problem. After having a barium enema, most patients 
will have light-coloured stool for two to three days afterward, and will feel fatigued. Drinking 
water to expunge the last remaining amounts of barium sulphate from the gastrointestinal tract 
is recommended. Fatigue is dealt with by obtaining more rest.

An alternative to the barium enema is to have a colonoscopy, though currently more 
details are seen through the barium enema contrast radiographs than through colonoscopy 
procedures. This may change as technology and training improve.

Source: MediResource Clinical Team. “Barium Enema: Lower GI (gastrointestinal) Series - Lower GI Exam.”  MyFox Dallas 
n.d.. 29 July 2008  
health.myfoxdfw.com/TestFactsheet.aspx?id=10&pg=1#S4

The Gamma Knife

Neurosurgeons, radiation oncologists, and medical physicists team up 
to carry out a procedure known as gamma knife surgery (GKS). In this 
procedure, a patient is fitted with an almost helmet-like contraption called 
a collimator. The collimator helps guide the technology to pinpoint a brain 
tumour’s location. Up to 201 different sources of the cobalt-60 isotope 
are used to irradiate the tumour, inundating it with a single high dose of 
ionizing radiation in a small amount of time. Typically, patients remain 
in the hospital for a day if complications do not arise. They resume their 
normal activities within a couple of days of having the procedure. No 
actual knife is used during the procedure.

The individual beams entering each hole do not have enough energy 
to damage the normal tissue. When these beams meet at a focal point 
(the tumour), they have a combined effect powerful enough to deliver a 
deadly dose of radiation to the cancerous cells.

Gamma knife surgery has benefits over the use of linear accelerators (linacs) to deliver 
radiation treatment. Rather than having multiple visits with lower doses of radiation delivered 
in fractions (fractionated treatment), GKS delivers one dose in one visit with outpatient 
processing happening within 24 to 48 hours.

The first gamma knife, invented in Sweden, was installed in a private hospital in 
Stockholm in 1968. The United States installed its first gamma knife in Pittsburgh in 1987. 
Winnipeg became home to Canada’s first gamma knife equipment and GKS program in 
2003, with Quebec City obtaining one in 2004 and Toronto in 2005. This technology is 
used only for intracranial conditions.

Figure 4-11    
The picture above is of a 
collimator. The collimator 
serves two purposes: it 
holds the patient’s head 
still, and it guides the 
gamma rays through 
small openings found 
throughout the surface of 
the half-sphere.



Figure 4-12
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Questions For Further Research:

1. Which type of radiation therapy discussed in this chapter is the least invasive? Which one 
has the least impact on quality of life immediately after treatment?

2. Why do you think it took more than 30 years to obtain gamma knife technology in Canada 
from the time of its invention? Justify your answer.

3. What types of treatment is your water plant using to make sure drinking water is safe? 
How have methods changed with time? Acknowledge your sources of information.

4. Research the Three Mile Island disaster that took place in Pennsylvania in 1979. Discuss the 
similarities and differences between this disaster and the Chernobyl disaster, both in terms 
of damage to the environment and in how the government handled the public health after 
that. Acknowledge your sources of information.

Career Moves…

Radiation Oncologist

A radiation oncologist works together with physicists and technicians to develop a radiation 
treatment plan for cancer patients. In consultation with the patient, decisions are made as to 
whether and which type of radiation treatment is needed, which particular part of the body 
will be irradiated, and how long treatment will last. The oncologist has expertise in cancer 
management, and is with the patient throughout the treatment process and afterwards, 
assessing treatment success and side effects. 

Career Connection Website – Canadian Association of Radiation Oncologists
www.caro-acro.ca/site3.aspx

CASE STUDY CONTINUED: The Final Decision
The treatment plan that Francine and her doctor agreed upon to eradicate the thyroid tumour 
was a combination of systemic radiation and teletherapy. Francine’s systemic radiation 
therapy was the ingestion of radioactive iodine capsules, the same effective treatment given 
to many people who suffered from the Chernobyl disaster in the Ukraine in 1986. The iodine 
capsules were added to her treatment plan to ensure that any cancerous cells left behind by 
teletherapy treatments would be obliterated. Her hospital stay was brief—only two weeks—
and her side effects were manageable. She felt nauseous  and  weak  after  each  of  her   
two teletherapy treatments. The iodine pills left her with a strange taste in her mouth and no 
appetite for food. When she did eat, she occasionally had difficulty keeping the food down. 
She noticed, too, that she tired more easily. Her doctor had alerted her to all of these side 
effects before her treatments, so she was fully prepared for them. She also knew that with 
time they would reduce and disappear—in about a month.

Figure 4-13
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Chapter 4 Review: Concepts and Terms

Concepts: A summary of the history of radiation treatment from the early 1900s began this 
chapter. Radioisotope therapy was then described as an external treatment method using 
an isotope as a source of radiation for treatment of cancer cells. Cancer cells either slow in 
reproduction or die altogether with this treatment.

Brachytheraphy is an internal treatment method, which is designed to deliver a concentrated 
dose of radiation on or near a tumour in a short amount of time. Typically, anaesthesia is 
needed to perform the implantation of a brachytherapy seed.

Systemic radiation therapy involves the patient ingesting a source of radiation that collects 
at cancer cells, killing them. Until the high levels of radiation leave the patient’s body, the 
individual may need to remain in a hospital room.

Teletherapy uses a machine outside of the body to direct radiation at cancer and surrounding 
tissue. Though surgery is not necessary, teletherapy may be combined with other forms of 
treatment such as brachytherapy.

Gamma knife surgery uses extremely precisely aimed ionizing radiation, usually from 
cobalt-60, to inundate a tumour with a single high dose of radiation in a small amount of 
time. This type of treatment delivers one dose in one visit, whereas teletherapy may involve 
multiple visits and doses.

Terms of Interest:

anaesthesia intensity modulated radiation therapy (IMRT)

barium enema intracranial

biopsy linear accelerator (linac)

brachytherapy neurosurgeon

cobalt photodynamic therapy

collimator radiation oncologist

colonoscopy radioisotope

esophagus radium

fractionated treatment systemic radiation

gamma knife teletherapy
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The image here is of a “creation mural” inside one of the schools in Pripyat, Ukraine. The 
photograph was taken in 2003 by Winnipeg arts professor Dr. David McMillan, who has 
an interest in documenting the “return to nature” of the human-constructed world in and 
around the Chernobyl nuclear power facility. The so-called 30-kilometere Exclusion Zone 
surrounding the science city of Pripyat is still so radioactive, humans cannot live there for the 
foreseeable future. This is a good opportunity to assess the benefits and risks of operating a 
nuclear facility without the necessary safeguards against the release of radioactive isotopes. 
Many more images and commentary can be found online at:  
http://home.cc.umanitoba.ca/~dmcmill/index.html 
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chapter 5 
Radioactivity
CASE STUDY CONTINUED: Life After Cancer
Six months after Francine’s treatment plan was completed, she returned to her doctor for 
another MRI. The scan showed that the tumour was completely eliminated. Her doctor 
informed her that she should come in after a year had passed to ensure the tumour would 
not reappear in that time. Her thyroid would continue to be monitored by regular ultrasound 
appointments over the next five years, along with her annual physical checkup. Because the 
cancer had not metastasized, Francine had an excellent chance of staying cancer-free.                                                     

Figure 5-1

A History of Radioactivity

While Roentgen was busy announcing his discovery of x-rays, French scientist Henri 
Becquerel was studying substances for the property of fluorescence in 1896. Fluorescence 
is a physical property of a substance that causes it to glow brightly when exposed to light. 
Becquerel studied the levels of fluorescence by placing the substances on photographic 
plates and recording the phenomenon. On a particularly cloudy day, Becquerel wrapped 
the photographic plates carefully and placed it in a drawer along with the substance he was 
studying – a compound containing uranium oxide.

Later, Becquerel wanted to use the plates for further fluorescence investigations. He 
discovered, though, that the plates that were in the drawer with the uranium compound were 
fogged – as if they had been exposed to sunlight. Since that had been impossible – he had 
wrapped them too carefully for that to occur – he concluded that the uranium compound was 
emitting some kind of invisible ray. This was the first recorded discovery of natural radiation. 
It would be two years after his discovery that Marie and Pierre Curie would report similar 
findings with the element radium. By then, the worldwide scientific community became 
interested in the phenomena associated with radioactivity.

The Curies, who were Polish scientists, were studying the natural radiation emitted by 
uranium compounds. They believed that there were other elements that were radioactive. 
It was through their experiments that both radium and polonium were discovered. Both of 
these elements are more radioactive than uranium.

Radium became a natural source for gamma rays and was used well into the 1950s. In the 
mid 1940s, synthetically produced sources for gamma rays started to replace the use of 
radium. These synthetically produced substances – cobalt and iridium – were cheaper to 
process.

The early studies of radioactivity led to many laboratory-related diseases, including loss of 
limbs and loss of life. Researchers diligently recorded the effects of radiation on living tissue 
at their own personal expense. It is through these forays into radioactivity and radiation that 
the area of health physics began to emerge – to promote the study of radiation, radioactivity 
and its effects, and to promote safe procedures in the handling, storage and experimentation 
with these substances.
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Cancer Connection…
Radium Cures Everything!… Or Does It?

Once radium was discovered, it began to be studied in detail in the early 1900s. Many 
scientists believed that the radioactive property of radium could help cure many ailments—
toothaches, arthritis, PMS, stomach disorders, high blood pressure, goitre, cancer…you name 
it, and radium could cure it. Soon, medical doctors in hospitals were ordering patients to 
drink radium-laced water. Other patients were prescribed radium rub therapy, where radium 
ore was literally rubbed on a wound or sore area of the body. Dr. John Harvey Kellogg, 
founder of the Kellogg cereal company, set up a radium spa where patients could come for a 
day of radium treatments that included radium ore mud baths, breathing in radioactive steam, 
and finishing off with a refreshing radioactive glass of water.

Companies wanting to cash in on the cure-all craze began selling products such as Radithor, 
“Certified Radioactive Water” that was marketed as a cure-all as good as a radium spa 
treatment – but it was less expensive. Henry Cosmos invented the Cosmos Bag, a cloth bag 
filled with radium ore powder. Householders could wrap this bag around their arm, leg, or 
neck to ease pain and rid themselves of arthritis.

See other examples of radium-based “cures” at www.orau.org/ptp/collection/quackcures/quackcures.htm               
Figure 5-3

Figure 5-2

Nuclear Model of the Atom

All substances are composed of atoms, the basic unit in particle theory. According to the nuclear model, an atom 
consists of a nucleus surrounded by electrons. The nucleus contains subatomic particles called nucleons. Both protons 
and neutrons are considered nucleons as they are located in the nucleus. Electrons have a negative charge; protons 
have a positive charge; neutrons are neutral and carry no charge. 

The strong nuclear force, one of the four fundamental forces of physics, holds the nucleus together—it would have 
to be strong to force protons and neutrons to stay together in an incredibly tiny space. It is the electromagnetic force, 
another of the four fundamental forces, which holds atoms together and keeps electrons surrounding the nucleus. The 
electromagnetic force manifests itself through forces between charges (such as those between protons and electrons). 
This force is what determines atomic and molecular structure—the other three fundamental forces are negligible 
influences on structure.

Atoms are electrically neutral, containing the same number of protons and electrons. If an atom gains or loses 
electrons, and thus becomes negatively or positively charged, it is no longer an atom but an ion. 

Atoms of the same element have the same number of protons and electrons, but can have differing numbers of neutrons 
in the nucleus. Variations of atoms of an element based on neutron-count are called isotopes. Isotopes of an element 
have the same atomic number as the element. The atomic number of an element represents the number of protons an 
atom of the element has. For instance, carbon has an atomic number of six. Isotopes of an element have differing mass 
numbers. The mass number of an element represents the total number of nucleons in an atom of the element. 

Typically, one isotope of an element is more stable than other isotopes for the same element. If an isotope is unstable, 
it can radioactively decay and release an alpha particle or a beta particle (see Chapter 1) to become more stable. An 
isotope can also become more stable by releasing energy in the form of gamma rays. 

Carbon has three naturally occurring isotopes: carbon-12, carbon-13, and carbon-14. Both 12C and 13C are stable. 14C is 
the isotope of carbon that is used for radioactive carbon dating. 

Uranium exists in nature in three forms: uranium-238 (almost 99% of all uranium), uranium-235 (almost 1% of all 
uranium), and uranium-234. 

Cobalt exists naturally as cobalt-59 as we mentioned in an earlier chapter. However, with more than 22 radioactive 
isotopes of cobalt from which to choose from, there is one that became widely used in radiation therapy: cobalt-60. 
This isotope of cobalt is synthetically produced in Canada in reactors under licence from Atomic Energy of Canada.

Molybdenum has seven naturally occurring isotopes with mass numbers 92, 94, 95, 96, 97, 98, and 100. The isotope 
molybdenum-99 (99Mo) is synthetically produced and is a vital part in the process of manufacturing radioactive isotopes 
for medical purposes.
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Reality Check…
Question | Does Food Become Radioactive When Irradiated? When Heated in a Microwave?

Origin: The most likely cause for these concerns stem from misuse of the microwave oven. 
The first microwave oven was put on the market in 1947 by the Raytheon Company of 
the United States. The oven stood 5½ feet tall, weighed over 750 pounds, and sold for 
approximately $5000 each. With the advent of computer technology, microwave oven design 
has improved greatly and most households have at least one microwave oven. There is also 
some confusion over the difference between microwaving food and irradiating food in order 
to sterilize it.                             

Reality Check: Microwaves do not use ionizing radiation to heat food. However, ionizing 
radiation is being used to irradiate food—this to kill unwanted pests and prevent spoilage 
from the growth of bacteria and microscopic flora. According to Health Canada, food does 
NOT become radioactive when irradiated and there is no scientific evidence that suggests 
harmful chemical changes are produced during the process of irradiation. Though most 
people may think of the microwave oven when asked about food irradiation, in fact some 
foods on the market today go through a process of being irradiated before hitting store 
shelves in order to kill off bacteria that can cause illness or death.

Research Question:

Research the June 2008 YouTube phenomenon of videos on “microwaves, cell phones, and 
popcorn” attempting to show how cell phones can take raw kernels of corn and convert 
them into popcorn. 

1. What is the hoax behind the videos? (How did they really pop the corn?)  

2. Was there any motive for promoting these videos on YouTube?

Radioactive Decay

Radioactive decay occurs naturally. There are three common types of radioactive decay 
that an isotope will use to spontaneously decay: alpha decay, beta decay, and spontaneous 
fission. In these processes, there are four options for the types of radioactive rays that are 
released: alpha rays, beta rays, gamma rays, and neutron rays.

If radioactive decay occurs through spontaneous fission, then the original atom splits to form 
two or more smaller atoms or daughter nuclei. The process involves release of extra neutrons 
or neutron rays. Fermium-256 typically undergoes spontaneous fission, and can form two 
daughter nuclei. We can show this process in the form of a chemical equation:
256Fm  140Xe + 112Pd + 4 n0

Xenon, palladium, and four extra neutrons are the products of this fission. Sometimes gamma 
rays are also emitted in the process, in order to make the two daughter nuclei more energy-
stable.

When alpha decay is the process by which an atom radioactively decays, there is a chemical 
change that takes place: a daughter nucleus is formed and an alpha ray (alpha particle or 
helium atom) is released. Uranium-238 undergoes this process:
238U   234Th + 4He

There are three types of beta decay: a beta-minus particle can be released, a beta-plus particle 
can be released, or an inner-orbiting electron can be absorbed by an unstable nucleus and 
changed into a neutron.

Figure 5-5

Figure 5-4
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In our first form of beta decay, sometimes unstable atoms that have an excess of neutrons 
may attempt to stabilize by converting a neutron into a proton. This process emits an electron, 
or a beta-minus particle (beta ray). It would make sense that if this process occurs inside the 
nucleus, the electron created in the process could not exist inside the nucleus and therefore 
must be ejected. Iodine-131 undergoes this type of beta decay:
131I   131Xe + e-1

Note that with this type of beta-decay, the mass number remains the same. The atomic 
number, however, increases by one.

A second form of beta decay occurs when unstable atoms have an excess of protons for the size 
of the nucleus. To attempt to gain stability, the nucleus may convert a proton into a neutron and 
in the process a positron or beta-plus particle (beta ray) is emitted. Recall that a positron is like 
an electron, except that it has a positive charge. An example of this type of radioactive decay 
occurs in sodium-22:
22Na   22Ne + e+1

For this type of beta decay, the mass number remains the same but the atomic number 
decreases by one.

The third form of beta decay occurs when unstable atoms attempt to gain stability by attracting 
an inner electron into the nucleus, where it combines with a proton to form a neutron. (See 
the “In the Media” section for this chapter to explore how this may be possible.) Iron-55 
decays in this way:
55Fe + e-1     55Mn

Once again, the mass number remains unchanged but the atomic number decreases by one.

Questions: 

1  If 14C were to release an alpha particle, what would the daughter nucleus be? Write the 
chemical equation.

2  If 14Cwere to release a positron, what would be the chemical equation for this process? 

3  If 14C  were to release a beta-minus particle, what would be the chemical equation for this 
process? Why might 14C  release a beta particle instead of alpha or gamma rays?

In The Media…
Quarks and Radioactive Decay 

Quarks are a relatively recent discovery and addition to the nuclear model of the atom. Though 
many of our experimental results can be explained by using the three basic subatomic particles 
(protons, neutrons, and electrons), beta decay cannot be explained without discussing quarks.

While researchers were studying beta decay, the weak nuclear  force was discovered. This 
force, one of the four fundamental forces, changes one flavour (or type) of quark into another. 
Protons and neutrons are each made up of three quarks. Another subatomic particle—the 
gluon—holds these quarks together. During beta decay, the weak interactive force breaks 
up the gluons and causes one quark inside a proton to change so that the proton becomes a 
neutron, or vice versa. Researchers continue to hone the nuclear model of the atom to include 
increasingly more subatomic particles – over two hundred, in fact!

Figure 5-6  
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Half-Life

It is difficult to predict at what moment a radioactive atom will decay. It is possible, however, 
to discuss the length of time it takes one-half of the total number of atoms in a sample of 
a radioactive isotope to decay. This length of time is defined as the half-life or T1/2 of the 
isotope. The half-life of carbon-14 is approximately 5730 days; the half-life of uranium-238 is 
about 4.47x109 years. Radium-226 has a half-life of 1600 years.

The activity of a radioactive sample is the number of disintegrations (decays) per second. If 
the sample starts out with a given number N of radioactive atoms, then over time the number 
of radioactive atoms decreases. To calculate the activity, we must take the change in the 
number of radioactive atoms, ΔN, and divide it by the time it took that change to occur, Δt. 
The number of disintegrations per second that occurs in any given sample is proportional to 
the original number of radioactive nuclei present, thus we can state that

ΔN
Δt

where λ is a proportionality constant called the decay constant.

Because the amount of radioactive atoms present at any given time decreases exponentially, 
we can also write an equation to represent the number of radioactive nuclei, N, present at 
any given time t, assuming we know the original number of radioactive nuclei, No:

N = No e-λt

Alternatively, we can relate the half-life T1/2 to the decay constant λ (with some substitution of 
one equation into another and natural logarithms coming into play) by the following formula:

T1/2 = 

Figure 5-7

= -λN

 0.693
λ

activity—the half-life of pennies
Obtain about 200 (or more) pennies and distribute them among your classmates. Initially, 
each penny represents an unstable nucleus. Each person should shake their pennies in 
a cup and then invert the cup so that each penny lies flat. A penny that comes up heads 
represents a nucleus that has decayed (and is assumed to now be stable), and a penny 
that comes up tails represents a nucleus that has not yet decayed—it is still unstable. 
Obtain the total number of pennies that come up tails—this is the number of unstable 
nuclei—and place them back inside the cups. Place a piece of masking tape over each 
of the pennies that have come up heads. They have decayed, but they are still part of 
the total mass and should be placed back in the cup. Repeat this several times until the 
number of pennies that remain in the game is less than 20. 

Graph the number of unstable nuclei versus the toss number. Theoretically, we expect 
that approximately half of the coins should decay with each toss. The half-life for the 
pennies is the amount of time it takes to go through the above process.

Write up a laboratory report. Include in your report what type of safety considerations 
would need to be considered if the pennies were in fact truly radioactive. 

Source:  Don Metz, PhD. Senior 4 Physics (40S): A Foundation For Implementation. Manitoba Education, Citizenship 
and Youth,  2005.
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Did You Know…
Geiger Counters and Detecting Decay

Geiger counters are named after Hans Geiger, who developed a similar device in 1908 
together with Ernest Rutherford. Geiger counters are devices used to detect alpha, beta and 
gamma radiation. They are rarely used to detect neutrons. Detection of alpha particles usually 
requires a specialized Geiger tube.

The device has a sensor in the shape of a tube. The tube is filled with an inert gas, such as 
helium or  neon, which has the ability to conduct electricity briefly when a charged particle 
(which could be alpha, beta, or gamma) temporarily makes the inert gas conductive. This 
conductivity is amplified as a pulse of current, displayed on a gauge with a needle for 
measurement purposes and audible clicks. More clicks, and faster clicking, indicates more 
radiation present in the item being tested.

Approximately 20 years after developing the device with Rutherford, Geiger teamed up with 
a Ph.D. student of his (Walther Muller) to improve it. This is why the device is sometimes 
referred to as a Geiger-Muller counter. 

Calculation Questions: 

1  In 16 days the number of radioactive nuclei decreases to one-eighth the number present 
initially. What is the half-life (in days) of the mystery substance?

2  Francine’s thyroid disorder was treated with an isotope of iodine, 131I. If this isotope has a 
half-life of 8.05 days, what percentage of the radioactive material in the pill remains after 
one month (30 days)?

3  To make the dials of 1950s watches glow in the dark, radium-226 is painted on. Assuming 
that the mass of paint ending up on one watch is one-billionth of a kilogram, how much 
radium, in kilograms, disappears while the watch is in use for 50 years? (Assume the half-
life of radium is 1600 years.)

4  Two radioactive substances Q and X are being observed by researchers, with equal 
amounts at the start of the experiment. Three days later, there are three times as many Q 
atoms as there are X atoms. If the half-life of the Q atoms is 2.0 days, find the half-life of 
the X atoms.

5  The number of radioactive atoms present at the beginning of an experiment is 5.0x1012. 
The number of radioactive atoms present thirty days later is 8.2x1011. What is the half-life 
(in days) of this substance?
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Units of Measurement

Just as there are units of measurement for radiation exposure, absorbed doses, and relative 
biological equivalents, measurement units have been developed for radioactivity. The SI unit 
for activity is named in honour of one individual who studied it—Henry Becquerel. The unit 
of measurement is Becquerels (Bq). One Becquerel is equal to one radioactive decay per 
second. (Note that a Geiger counter records “counts per minute,” however this only indicates 
what is reaching the detector and does not tell us what the radioactive substance is actually 
doing.)

While Becquerel was studying radioactivity, so were the Curies. Thus, a second unit of 
measurement (not within the SI accepted units of measurement) was the Curie (Ci). One 
Curie was equal to the number of particles per second decaying from one gram of radium. 
When conversion was needed from Curies to Becquerels, the following factor was used:

 1 Curie = 37 000 000 000 Becquerels      

or  1 Ci = 3.7x1010 Bq

Review of SI Units of Measurement for Radiation and Radioactivity - What were they again?

Radiation Exposure (ions created in air): measured in coulombs per kg (C/kg)

Radiation Absorbed Dose: measured in grays (Gy)

Radiation Biologically Equivalent Dose (takes into account different absorption capabilities of 
different tissues and organs): measured in Sieverts (Sv)

Radioactivity (number of decays per second): measured in Becquerels (Bq) 

Units of Measurement...…another approach

(Remember what we began in Chapter 3?)

Imagine you are standing outside in the rain. If we were to use SI units for radiation and 
radioactivity and connect them to something about the rain:

•	 the	number of dust particles that become raindrops would be comparable to exposure, 
measured in coulombs per kg

•	 the	amount of rain falling would be like radioactivity. Measured in Becquerels

•	 the	amount of rain hitting you would be like the absorbed dose, measured in grays

•	 how wet you get would be like the biologically equivalent dose, measured in Sieverts
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ESTIMATES OF RADIATION LEVELS: Natural and Synthetic

Level (mSv) Duration Description

0.001-0.01 Hourly Cosmic ray dose on high-altitude flight, depends on 
position and solar sunspot phase. 

0.219 Annual Natural background radiation, including radon, in 
Winnipeg, Manitoba

0.46 Acute Estimated largest off-site dose possible from March 
28, 1979 Three Mile Island accident

1.4 Annual Natural background radiation, including radon, in 
Nunavut

2 Annual USA average medical and natural background

2.2 Acute Average dose from upper gastrointestinal diagnostic 
X-ray series

6.4 Annual High Background Radiation Area (HBRA) of  
Yangjiang, China

7.6 Annual Fountainhead Rock Place, Santa Fe, NM natural

175 Annual Guarapari, Brazil natural radiation sources

500-1000 Acute Low-level radiation sickness due to short-term  
exposure

500-1000 Detonation World War II nuclear bomb victims

activity—radioactivity of household object 
For this activity, you will need to have your teacher access a Geiger counter and as many 
of the following household items that you can find: a watch made in the 1950s, a piece of 
Fiestaware® pottery, a smoke detector, a piece of paper, a piece of plastic, a piece of lead, 
potassium chloride salt (KCl)—sold as “No Salt” in stores, and aluminium foil. You may need 
earphones or a speaker to be able to hear the clicks from the Geiger counter for some of 
these objects—in particular the potassium chloride salt.

Procedure:

1. Determine which items are radioactive at a distance of 5 cm from the Geiger counter—
record the radioactivity readings from the Geiger counter.

2. Determine which items—paper, plastic, or lead—block radiation when placed between the 
Geiger counter and the radioactive substance, and by how much. What does this tell you 
about the kind of radiation being released—alpha, beta, or gamma?

3. Choose one radioactive object, and use the Geiger counter to measure radiation levels at 2 
cm, 4 cm, 6 cm, 8 cm, and 10 cm from the object. How does distance affect radiation?

4. This last step will allow you to measure the attenuation of beta radiation from the 
potassium-40 isotope found in KCl (0.7% is K-40, the rest is K-39). Place one layer of 
aluminium foil over a pile of KCl. Use the Geiger counter at close range to measure beta 
decay. Place a second Al layer on top of the first layer, and measure beta particles again. 
What thickness of Al will reduce beta particales to half the original amount? What thickness 
will stop all beta decay particles from reaching the detector?
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Figure 5-9 
Manitoba medical physicists Daniel Rickey and 
Anita Berndt with the gamma knife located at 
the Health Sciences Centre in Winnipeg.

Career Moves…

Medical Physicist   

Anita Berndt and Daniel Rickey are medical physicists working at 
CancerCare Manitoba. They are health care professionals with graduate 
training (Ph.D.) in the medical applications of physics and both have 
certification by the Canadian College of Physicists in Medicine (CCPM). 
Their work involves the use of radioisotopes, x-rays, ultrasound, magnetic 
and electric fields in diagnosis and therapy. Anita works in radiation 
therapy, which uses high-energy radiation in the treatment of cancer. Her 
role in radiation therapy includes treatment planning and radiotherapy 
machine testing, calibration, and troubleshooting. Daniel specialises in 
diagnostic imaging which uses x-ray, ultrasound, magnetic resonance, 
and nuclear medicine for imaging patients. His role in diagnostic imaging 
includes machine purchasing and installation, testing, quality control, 
and operation. Anita and Daniel have academic appointments with the 
University of Manitoba and so are also involved in research and teaching. 

Career Connection Website – International Organization for Medical 
Physics: www.iomp.org
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Chapter 5 Review: Concepts and Terms

Content: In the late 1800s to early 1900s, Henri Becquerel was the first to record natural 
radiation from an uranium source. The Curies reported similar findings with radium 
and polonium. In the mid-1940s, cobalt and iridium were easily and cheaply produced 
synthetically and became prime sources for gamma rays.

The nuclear model of the atom consists of a nucleus, containing subatomic particles called 
nucleons, surrounded by electrons. The strong nuclear force holds the nucleus together. 
The electromagnetic force keeps the electrons near the nucleus. Variations of atoms of an 
element based on neutron-count are called isotopes, which have the same atomic number but 
differing mass numbers. An unstable isotope can become more stable by releasing energy in 
the form of gamma rays.

Radioactive decay occurs naturally through release of alpha particles, beta particles, gamma 
rays, or neutron rays. If radioactive decay occurs through spontaneous fission, then the 
original atom splits to form two or more daughter nuclei (smaller atoms). When alpha decay 
occurs, a chemical change takes place and a daughter nucleus is formed from the original 
atom.

There are three types of beta decay. In the first form of beta decay, unstable atoms which 
have an excess of neutrons may attempt to stabilize by converting a neutron into a proton 
and emit an electron in the process. In the second form of beta decay, unstable atoms with 
an excess of protons in the nucleus may convert a proton into a neutron and emit a positron 
in the process. I n the third form of beta decay, unstable atoms may attempt to stabilize by 
attracting an electron into the nucleus to combine with a proton and form a neutron.

The half-life of an isotope is the time it takes one-half of the total number of atoms in a 
sample of a radioactive isotope to decay. The activity of a radioactive sample is the number of 
disintegrations (decays) per second.

Terms of Interest:

activity Geiger-Muller counter

Becquerel (Bq) gluon

beta-minus particle half-life

beta-plus particle Henri Becquerel

Curie (Ci) mass number

daughter nucleus neutron

decay constant neutron ray

electromagnetic force nucleon

fission quark

fluorescence spontaneous fission

fundamental force strong nuclear force

Geiger counter weak nuclear force
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Figure 6-1

Figure 6-2

chapter 6 
Further Applications of Radiation
CASE STUDY CONTINUED: The Final Verdict for Francine
Francine kept going back to her doctor for physical examinations every year. Five years 
after her radiotherapy, the cancer had still not returned. The doctor congratulated her and 
told her she could look forward to a long and fulfilling life. Throughout the process of 
treatment, her doctor had encouraged her to continue practicing the healing ceremonies 
of her aboriginal cultural heritage. That encouragement, plus the support of her family and 
community members, helped her through the up-and-down emotions she had throughout 
the process of diagnosis, treatment and recovery. She could now  say with some  degree 
of confidence that she was “cancer-free.”

Ionizing Radiation Applications: Sterilization

Gamma rays are commonly used to sterilize disposable medical equipment such as needles, 
IV sets, and syringes. Typically, cobalt-60 is the radioisotope of choice as it continuously emits 
gamma rays. Storage of this in a medical facility needs to take into account the hazards of 
gamma radiation on humans, as the gamma rays produced by this isotope are extremely high 
in energy.

Electron beams can also be used for medical equipment sterilization. The advantage of 
using electron beams rather than gamma radiation is that gamma rays continuously emit 
radiation, but electron beam processing can be turned on and off. As well, higher doses can 
be administered through electron beams so less exposure time is required to sterilize the 
equipment. This can prevent the degradation of plastics that may be sterilized (the longer 
plastic is subjected to radiation, the greater the risk of the polymers breaking down). One 
negative property of electron beam technology is that it does not penetrate as deeply as 
gamma rays.

Though it is not ionizing radiation, ultraviolet light has limited use for sterilization purposes, 
but is still popular in the form of germicidal lamps. Surfaces and some transparent objects can 
be sterilized in this way, including the interiors of biological safety cabinets. However, if the 
surfaces are dirty the UV radiation will not sterilize the surface underneath it. UV light can 
also damage many plastic surfaces, including polystyrene foam (used in home insulation).

Irradiation is used by the United States Postal Service to sterilize mail destined for the 
Washington, D.C. area. Food irradiation for some spices and ground meats is now widely 
used to prevent illness.



52 Manitoba Resource for Health and Radiation Physics Student’s Guide

Figure 6-3  
A bone scan done with 
a tracer of radioactive 

strontium. In this image, 
bones can clearly be seen 

along with tendons.

Did You Know…
Litvinenko, Thallium, and Russian Radiation Intrigue

In November of 2006, the public’s interest in espionage was piqued as The Russian 
Federation was thrust into the international spotlight with former KGB agent Alexander 
Litvinenko allegedly having been poisoned by another former KGB agent. The KGB was the 
“spy agency” of the former Soviet Union.

Litvinenko, a published author who had frequently spoken out against then Russian president 
Vladimir Putin, had a brief meeting with Andrei Lugovoy in a central London restaurant 
before meeting an Italian man for lunch. The following day, Litvinenko became violently ill 
and was taken to hospital by his wife. It would take more than two weeks for the effects of 
the poison – hair loss, shut-down of internal organs, breathing difficulty – to become clear. 
Toxicology tests finally confirmed that thallium was present in Litvinenko’s bloodstream. 

Scotland Yard detectives investigated both of the men with whom Litvinenko met previous to 
his illness for possible connections to the poisoning. They have not ruled out the possibility of 
the use of a “poison pen” that could have been used to inject the man with thallium unnoticed. 
This would be consistent with a previous assassination in London of Georgi Markov, a 
Bulgarian dissident stabbed with a poison-tipped umbrella in 1978.

Research Question:

What are the effects of thallium poisoning on the human body?  
In what everyday products can thallium be found?

Ionizing Radiation Applications: Tracer Methods in Nuclear 
Medicine (Gamma Scans)

We have already discussed how radiotracers are used in the various types of diagnostic 
technologies to enhance the results of the scan and indicate areas of interest or “hot spots.” 
In nuclear medicine, gamma scans are done on bones to determine bone growth patterns, 
potential for arthritis, or identify cancerous areas. Almost all nuclear medicine studies are 
performed using an isotope of technetium – 99Tc.

Gamma scans are done by a camera that picks up gamma rays emitted by a radiotracer. 
These gamma rays are converted into images that contain light and dark spots. Dark spots or 
“hot spots” do not necessarily indicate areas of cancer. Hot spots show where the radiotracer 
has collected. Since the radiotracer is typically attached to a substance that will gravitate 
towards areas of the body where cells are growing at faster or abnormal rates, the hot spots 
can either indicate cancer or arthritis or some other type of bone disease. Use of gamma 
cameras is much more common than PET scans.

Questions: 

1   Can you identify what might be potential areas of concern in this bone scan?

2   Research what type of radiotracer might be used to enable doctors to see tendons 
on a scan. 
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Figure 6-5

Figure 6-4 

In The Media…
The Canadian Medical Isotope Controversy

Earlier, in Chapter 2, we were introduced to the importance Canada has in the production and 
distribution of what are called medical isotopes. In recent years, Canada has an interesting 
story to tell about how critical we are to the world supply of certain isotopes used in medical 
treatments - particularly cancer treatments. In November of 2007, the Canadian Nuclear Safety 
Commission (CNRC) and Atomic Energy of Canada Limited (AECL) brought Canada’s role in 
providing much of the world’s supply of medical isotopes to the forefront. In a controversial 
move, the CNRC shut down the nuclear reactor (run by AECL) at Chalk River, Ontario for 
twenty-seven days. It was a shutdown related to a safety concern on the part of the CNRC.

At that time, much of the world supply of certain medical isotopes produced by Canadian 
reactors became an urgent situation to address. On December 16, 2007 the Canadian 
government passed emergency legislation allowing the Chalk River reactors to reopen and to 
continue to provide medical isotopes to their clients around the world. This is an important 
example of how science connects to the well-being of people, and the reliance we have on 
technology to serve our health care needs. It also highlights the Canadian nuclear industry 
and our need to understand it better.

Research Question:  

1. Check into this fascinating story, and explore in a balanced way the positions of the 
CNRC, the Canadian government, and the AECL (a good place to start is online at: http://
www.cbc.ca/technology/ and use the search bar with the keywords “medical isotopes”). If 
you were the Natural Resources Minister for the federal government and you had to make 
the decision whether or not to shut down a Canadian reactor that produces one-third of 
the world supply of medical isotopes — even temporarily — what would you decide to 
do?  You might want to have teams of students take positions on this controversy and 
debate the issue in class.

2. Read the public written and verbal statements made by both the CNRC and the AECL 
(which can be found online). If you were the Health Minister for the federal government 
and you had to make the decision whether or not to shut down the reactor—albeit 
temporarily—what would you decide? Justify your decision.

Non-Ionizing Radiation Applications: Tanning Beds
Non-ionizing radiation is electromagnetic radiation without enough energy to cause 
ionization. It does have enough energy to give to particles, with the end result usually 
being heating. Non-ionizing radiation includes frequencies from one hertz (1 Hz) up to 300 
GHz (gigahertz), and wavelengths from 10-7m to 109 m. As wave frequency decreases and 
wavelength increases, the energy level decreases. Types of non-ionizing radiation include 
UV light, visible light, infrared light, microwaves, and radio waves.

Ultraviolet (UV) light is naturally obtained from sunlight. Artificial sources include 
germicidal lamps, mercury vapour lamps, halogen lights, fluorescent and incandescent 
lights, and tanning booths. Germicidal lamps are designed to emit UVC radiation to kill 
bacteria and sterilize surfaces. Humans can obtain severe sunburn to the face, sometimes 
called snow blindness, with overexposure to UVC light. Though very painful, it does clear 
up in a few days.

A component of sunlight is UVB light, and is the most destructive form of UV radiation. It 
has enough energy to cause damage at the cellular level (DNA is affected). Some tanning 
beds operate using UVB light. Effects of UVB on humans include erythema (sunburn), 
cataracts, and skin cancer.                                                                                     
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Figure 6-6

Cancer Connection…
Non-Ionizing Radiation Applications: Tanning Beds

Non-ionizing radiation is electromagnetic radiation without enough energy to cause ionization. It does have enough 
energy to have an effect on particles, with the end result usually being heating. Non-ionizing radiation includes 
frequencies from one hertz (1 Hz) up to 300 GHz (gigahertz), and wavelengths from 10-7m to 109 m. As wave frequency 
decreases and wavelength increases, the energy level decreases. Types of non-ionizing radiation include UV light, visible 
light, infrared light, microwaves, and radio waves.

Ultraviolet (UV) light is naturally obtained from sunlight, and is probably the most familiar form of non-ionizing radiation 
for most people. Artificial sources include germicidal lamps, mercury vapour lamps, halogen lights, fluorescent and 
incandescent lights, and indoor tanning facilities. Germicidal lamps are designed to emit UVC radiation to kill bacteria 
and sterilize surfaces. Humans can obtain severe sunburn to the face, sometimes associated with “snow blindness,” with 
overexposure to UVC light. Though very painful, it does clear up in a few days. A component of the spectrum of sunlight 
is UVB light, and this is the most destructive form of UV radiation where exposed skin is a concern. It has enough energy 
to cause damage at the cellular level (so DNA is affected). Some indoor tanning beds operate using some component of 
UVB light (less than 10% of the total exposure), with the remainder as UVA. Known effects of UVB on humans include 
erythema (sunburn), eye cataracts, and skin cancer. Most tanning beds are a concentrated source of UVA, and sometimes 
UVB, light and so these should be used with real caution. It is recommended these days that young people under the 
age of 18 not make use of indoor tanning at all, and those who are aged 35 or less face a dramatically increased risk of 
developing a form of skin cancer – called cutaneous malignant melanoma – later in life if they have significant exposure 
to UVA from tanning bed use.

Non-Ionizing Radiation Applications: Communications

Cell phones, AM and FM radio, microwave towers all radiate electromagnetic energy. These 
microwaves and radiofrequency waves surround humans daily. 

Radiowaves are constantly being emitted by radio station towers. If you listen to a radio 
station labelled 99.9, that number indicates its frequency: it is operating at 99.9 megahertz. The 
wavelength of this station can be determined by taking the speed of light and dividing it by the 
frequency. (Recall: v=λf). A station operating at 99.9 MHz would therefore have a wavelength 
of approximately 3.03 metres.

AM, FM, and cellular signals travel in a straight line, unimpeded through the earth’s 
atmosphere. Since the earth’s surface is curved, at some point these signals will be lost – unless 
they are reflected back to the earth’s surface by the ionosphere or a transmission tower. The 
ionosphere (an atmospheric layer where sunlight ionizes atoms) reflects radiowaves with less 
than 30 MHz in frequency. Typically, FM signals carry higher frequencies and thus are not 
reflected by the ionosphere. AM radiowaves use shorter frequencies than cellular and FM 
waves, and so are typically reflected back to the earth’s surface from the ionosphere.

Health Canada has a safety code which restricts exposure to the general public to no higher 
than 1/50th of the levels where harmful biological effects have been observed. The Safety 
Code restricts both the absorption rates and the corresponding exposure levels for these types 
of electromagnetic waves. 

According to Health Canada, it is possible to exceed the maximum allowable exposure limit 
if an individual stands less than three metres away from a transmitting cellular antenna. 
However, there are safety fences around these sites and normally the general public does not 
have access. Workers in the vicinity of towers such as these can be exposed to no more than 
1/10th the levels where harmful biological effects have been observed (according to Health 
Canada’s regulations).

Research Questions:

1. Which new frequencies did the Canadian government recently open up to allow for more 
competition amongst cellular service providers? How does a cellular service provider or 
radio station obtain an operating frequency?

2. Why are radio station signals sometimes more clear at night than during the day?



activity—marshmallows, microwaves, and mathematics
Microwaves without turntables cook unevenly, due to wave patterns. We can use that 
principle to confirm that the electromagnetic radiation inside a microwave oven does, in fact, 
travel at the speed of light.

1. Remove the turntable from the microwave—if it has one. Place a flat piece of cardboard 
over the bottom of the microwave.

2. Line the entire bottom of the microwave with mini marshmallows.
 Set the microwave on high power and cook the marshmallows until you start to see a 

pattern of melting/toasting and uncooked marshmallows. At this point, carefully remove 
the cardboard and marshmallows. 

3. Take a ruler and measure the distance between two consecutive melted spots. This will 
be equal to the wavelength of the electromagnetic waves. (Are the melted spots nodes or 
antinodes?)

4. Check on the back of the microwave for a sticker which will tell you the operating 
frequency of the microwave (typically 2450 MHz). Use this value and your wavelength 
converted into metres to calculate the speed at which the electromagnetic waves are 
traveling in your oven. Is it 3x108 m/s? 

Figure 6-8

For Further Research:

How do smoke detectors 
use alpha-particle emitters?

Is it ionizing or non-
ionizing radiation that is 
used? 

Create a presentation of  
your results.
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Figure 6-7

Reality Check…
Question | Can Cell Phones Cause Cancer? 

Origin: A few individuals attempted to take cell phone companies to court in the early 1980s, 
claiming brain tumours were caused by their cell phones. Online communities continue to 
perpetuate this and similar ideas, claiming that the electromagnetic energy radiating from cell 
phones is powerful enough to pop popping corn and to do damage to brain tissue.

Reality Check: The website Discovery Health states that the US Food and Drug 
Administration’s Centre for Devices and Radiological Health believes that there is no 
consistent association between cell phone use and cancer. Rather, the Centre states that 
studies have shown that there is an identifiable link between cell phone usage and increased 
risk of having a car accident. 

Source: Gansler, Dr. Ted. “Discovery Health:: Top 10 Cancer Myths: Myth 8.”  Discovery Health n.d.. 29 July 2008 
health.discovery.com/centers/cancer/top10myths/myth8.html

Non-Ionizing Radiation Applications: Microwave Ovens

Microwave ovens for consumer use typically operate at 500 to 1000 watts at a frequency of 
approximately 2450 megahertz (MHz). The energy from these microwaves is used to boil water 
or cook food that is placed inside the oven. 

Microwave ovens cook food by irradiating them with high-frequency, very low wavelength 
waves. Wavelengths typically are around 10-12 cm inside a microwave. Since most food 
has a high water content, and since water is a polar molecule, the energy carried by the 
electromagnetic waves inside the oven is imparted to the water molecules. This extra energy 
is converted into heat, which eventually cooks the food. Leave the food in long enough, and 
water will begin to evaporate, drying out the food. 

Regulations require that microwave ovens be constructed so that radiation leakage to the outside of the oven is minimal 
– approximately 1000 times less than what is present inside the oven. Contrary to some emails and online bloggers, the 
radiation that does leak from your microwave is not harmful. Microwaves cannot penetrate metal, which is why the oven is 
constructed of metal (sometimes coated in plastic). Even the viewing window has a mesh made of metal on it. Unless your 
microwave is damaged or altered it will not leak sufficient amounts of microwave energy to cause damage.



Figure 6-10
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Terms of Interest:

accelerator physicist gigahertz

Atomic Energy of Canada Limited (AECL) ionization

blogger radiofrequency

Canadian Nuclear Safety Commission (CNRC) radiowave

Chalk River Laboratories smoke detector

electron beam sterilization

erythema sterilization

gamma ray synchrotron

gamma scan World Health Organization (WHO)

germicidal lamp

Career Moves…
Accelerator Physicist   

As an accelerator physicist, your job duties would include the operation of an accelerator 
complex: synchrotron, linear accelerator, and all the computer technology connected to 
those devices. Beam studies and high-level accelerator calculations aimed at understanding 
the performance of the accelerator and research into areas of personal interest are typically 
encouraged by employers. At this level of your career, you will have already completed 
doctorate-level studies, have several years of experience in theoretical and practical physics, 
and have developed the leadership skills to organize a team of researchers to meet specific 
goals. This is pure physics at an elite level!

Career Connection Website – Canadian Association of Physicists: www.cap.ca

Chapter 6 Review: Concepts and Terms

Concepts: Gamma rays can be used to sterilize disposable medical equipment. Typically, 
cobalt-60 is the radioisotope of choice for this, however electron beams can also be used 
for the same purpose. The advantage of using electron beams is that less exposure time is 
required to sterilize equipment, and electron beam processing can be turned on and off. 
Ultraviolet light has limited sterilization purposes in the form of germicidal lamps for surfaces 
and some transparent objects.

Gamma scans are done by a camera that converts gamma rays into images. Use of gamma 
cameras is much more common than PET scans.

Types of non-ionizing radiation include UV light, visible light, infrared light, microwaves and 
radiowaves. UV light is made up of UVA, UVB, and UVC light. UVC light can cause severe 
burns to human skin, which can clear up in a few days. UVB light can cause erythema 
(sunburn), cataracts, and skin cancer. Most tanning beds operate by using UVA and UVB light.

Applications of non-ionizing radiation include cell phones, AM and FM radio, and 
microwaves. Health Canada has a safety code which restricts exposure to the general public 
to no higher than 1/50 of levels where harmful biological effects have been observed. 
Contrary to some emails and online bloggers, the radiation that may leak from your 
microwave is not harmful.


	Students_Guide_Title Page_Full Colour.pdf
	physics_students E_title pg.pdf
	physics_students E_ack,ltr,toc.pdf
	physics_students E_chapter1.pdf
	physics_students E_chapter2.pdf
	physics_students E_chapter3.pdf
	physics_students E_chapter4.pdf
	physics_students E_chapter5.pdf
	physics_students E_chapter6.pdf

