CONTENTS

Acknowledgements iii
Table of Contents v

Introduction 1
Background 1
Vision for Scientific Literacy 1
Goals for Canadian Science Education 2
Beliefs About Learning, Teaching, and Assessing Science 2
Changing Emphases in Science Education Content Delivery 3
Changing Emphases to Promote Inquiry 3

Manitoba Foundations for Scientific Literacy 5
The Five Foundations 5
A. Nature of Science and Technology 5
B. Science, Technology, Society, and the Environment (STSE) 7
C. Scientific and Technological Skills and Attitudes 10
D. Essential Science Knowledge 13
E. Unifying Concepts 14
Conceptual Organizer 15

Implementation of Senior 2 Science 17
The Senior 2 Student and the Science Learning Environment 17
Characteristics of Senior 2 Learners 18
Senior 2 Learners: Implications for Teachers 18
Fostering a Will to Learn—Linking Language and Scientific Literacy 21
Fostering Motivation 22
Creating a Stimulating Learning Environment 23
Language Learning Connected to Science 24
Diversity in the Classroom 25
Instructional Philosophy 26
Ethical Issues 27
The Responsible Use of Animals in the Science Classroom 27
Learning Resources 28
Using this Curriculum Document 28
Preparing a Lesson 29
Promoting Strategic Learning 30
The Modes of Representation 30
 The Visual Mode 30
 Numerical Mode 33
 Graphical Mode 33
 Symbolic Mode 35
The Importance of the Modes of Representation 35
Scaffolding: Supporting Students in Strategic Learning 37
Differentiating Instruction 38
Learning Phases 38
Instruction 39

Classroom Assessment in Science 41
Planning for Assessment 41
Characteristics of Effective Assessment 42
Managing Classroom Assessment 46
Changing Emphases in Assessment of Student Learning 48
Formative and Summative Assessment 48

Document Organization 51
Guide to Reading the Specific Learning Outcomes and the Four-Column Format 51
The Four–Column Format 52
Guide to Reading Specific Learning Outcomes 54

Cluster 0: Overall Skills and Attitudes 0.1

Cluster 1: Dynamics of Ecosystems 1.1

Cluster 2: Chemistry in Action 2.1

Cluster 3: In Motion 3.1

Cluster 4: Weather Dynamics 4.1

Appendix 1: Dynamics of Ecosystems A1

1.1 Student Learning Activity: Environmental Factors and Population Size A3
1.2 Student Learning Activity: Creating a Closed Ecosystem A5
 Teacher Support Material: Creating a Closed Ecosystem A7
1.3 Student Learning Activity: Carrying Capacity A8
1.4 Student Learning Activity: Limiting Factors A9
1.5 Student Learning Activity: Predator–Prey Interactions A11
1.6 Teacher Support Material: Educating for Sustainability: Decision-Making Skills A14
Appendix 2: Chemistry in Action A15
2.1 Blackline Master: Lewis Dot Diagrams A17
2.2 Blackline Master: Chemical Bonds and Lewis Dot Diagrams A18
2.3 Student Learning Activity: Experiment: Properties of Acids and Bases A19
2.4 Student Learning Activity: Experiment: Acids and Bases A23
2.5 Teacher Support Material: Experiment: Law of Conservation of Mass A27
2.6 Teacher Support Material: Experiment: Reaction Types A28
2.7 Teacher Support Material: Ionic Compounds A29
2.8 Teacher Support Material: Molecular Compounds A31
2.9 Student Learning Activity: Experiment: Reaction Types A33

Appendix 3: In Motion A43
3.1 Teacher Support Material: A Visual Representation of Motion A45
3.2 Student Learning Activity: Graphical Analysis A47
3.3 Teacher Support Material: Force and Natural Motion A48
3.4 Teacher Support Material: Galileo’s Thought Experiment A50
3.5 Teacher Support Material: Newton’s First Law A51
3.6 Student Learning Activity: Inertia and the Unrestrained Passenger A54
3.7 Student Learning Activity: Braking Distance A56
3.8 Student Learning Activity: Reaction Time A59
3.9 Teacher Support Material: Calculating Braking Distance A62

Appendix 4: Weather Dynamics A63
4.1 Blackline Master: Earth’s Energy Budget A65
4.2 Teacher Support Material: Sunlight and Seasonal Variations A66
4.3 Teacher Support Material: Exploring Albedo A72
4.4 Student Learning Activity: Connecting Mathematics to the Atmosphere (For Further Exploration) A76
4.5 Blackline Master: The Coriolis Effect A78
4.6 Teacher Support Material: Understanding the Link Between Coriolis and Weather A80
4.7 Student Learning Activity: It Bends Because the Earth Turns A83
4.8 Student Learning Activity: Coriolis Deflection and Earth Latitude A87
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Student Learning Activity: Convection Currents</td>
<td>A88</td>
</tr>
<tr>
<td>4.10</td>
<td>Student Learning Activity: The Atmosphere-Ocean Connection: El Niño and</td>
<td>A89</td>
</tr>
<tr>
<td></td>
<td>La Niña (For Further Exploration)</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Blackline Master: World Map (Globe Projection)</td>
<td>A103</td>
</tr>
<tr>
<td>4.12</td>
<td>Blackline Master: World Map</td>
<td>A104</td>
</tr>
<tr>
<td>4.13</td>
<td>Blackline Master: Map of North America</td>
<td>A105</td>
</tr>
<tr>
<td>4.14</td>
<td>Blackline Master: Map of Canada with Major Rivers</td>
<td>A106</td>
</tr>
<tr>
<td>4.15</td>
<td>Blackline Master: Circumpolar Map</td>
<td>A107</td>
</tr>
<tr>
<td>4.16</td>
<td>Blackline Master: The Beaufort Wind Scale</td>
<td>A108</td>
</tr>
<tr>
<td>4.17</td>
<td>Student Learning Activity: Understanding Highs and Lows (For Further</td>
<td>A109</td>
</tr>
<tr>
<td></td>
<td>Exploration)</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Student Learning Activity: Introduction to Weather Maps and Symbols</td>
<td>A117</td>
</tr>
<tr>
<td>4.19</td>
<td>Teacher Support Material: Using Satellites to Track Weather</td>
<td>A129</td>
</tr>
<tr>
<td>4.20</td>
<td>Blackline Master: The Fujita Scale of Tornado Intensity</td>
<td>A137</td>
</tr>
<tr>
<td>4.21a</td>
<td>Student Learning Activity: Canadian Tornado Frequency Data:</td>
<td>A138</td>
</tr>
<tr>
<td></td>
<td>An Applied Mathematics (20S) Approach</td>
<td></td>
</tr>
<tr>
<td>4.21b</td>
<td>Student Learning Activity: Canadian Tornado Frequency Data:</td>
<td>A143</td>
</tr>
<tr>
<td></td>
<td>A Consumer Mathematics (20S) Approach</td>
<td></td>
</tr>
<tr>
<td>4.21c</td>
<td>Student Learning Activity: Canadian Tornado Frequency Data:</td>
<td>A149</td>
</tr>
<tr>
<td></td>
<td>A Pre-Calculus (20S) Approach</td>
<td></td>
</tr>
<tr>
<td>4.22a</td>
<td>Teacher Support Material: Watch Out! There May Be a Tornado in Your</td>
<td>A155</td>
</tr>
<tr>
<td></td>
<td>Backyard!!</td>
<td></td>
</tr>
<tr>
<td>4.22b</td>
<td>Blackline Master: Tornado Plotting Map of Canada</td>
<td>A158</td>
</tr>
<tr>
<td>4.23</td>
<td>Student Learning Activity: Tornado-Related Statistics and Graphing</td>
<td>A159</td>
</tr>
<tr>
<td>4.24</td>
<td>Teacher Support Material: Location/Place—Where in the World Can</td>
<td>A164</td>
</tr>
<tr>
<td></td>
<td>Severe Storm Events Happen?</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Student Learning Activity: Tracking a Killer Hurricane</td>
<td>A168</td>
</tr>
<tr>
<td>4.26a</td>
<td>Blackline Master: East Pacific Hurricane Tracking Chart</td>
<td>A175</td>
</tr>
<tr>
<td>4.26b</td>
<td>Blackline Master: Atlantic Hurricane Track Chart</td>
<td>A176</td>
</tr>
<tr>
<td>4.27</td>
<td>Blackline Master: The Saffir-Simpson Hurricane Scale and Fujita</td>
<td>A177</td>
</tr>
<tr>
<td></td>
<td>Tornado Scale</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Blackline Master: Weather Map Symbols</td>
<td>A179</td>
</tr>
<tr>
<td>4.29</td>
<td>Blackline Master: Weather Map Symbols—A Student’s Guide</td>
<td>A180</td>
</tr>
<tr>
<td>4.30</td>
<td>Student Learning Activity: Tracking a Severe Winter Storm: The 1997</td>
<td>A182</td>
</tr>
<tr>
<td></td>
<td>Manitoba Blizzard</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Student Learning Activity: Climates Do Change Naturally</td>
<td>A190</td>
</tr>
<tr>
<td>4.32</td>
<td>Blackline Master: Canadian Climatology Datasets</td>
<td>A197</td>
</tr>
<tr>
<td>4.33</td>
<td>Blackline Master: Annual Regional Temperature and Precipitation Datasets</td>
<td>A201</td>
</tr>
</tbody>
</table>
4.34 Blackline Master: Greenhouse Gases and Climate Change \(A208 \)
4.35 Student Learning Activity: Plotting CO₂ and Temperature \(A209 \)
4.36 Teacher Support Material: Ozone—What Is It, and Why Do We Care About It? \(A215 \)
4.37 Teacher Support Material: Volcanoes and Global Cooling \(A219 \)
4.38 Teacher Support Material: Student and Teacher References—Weather Dynamics \(A222 \)

Appendix 5: Developing Assessment Rubrics in Science \(A239 \)
- What Assessment Rubrics Are \(A241 \)
- Why Teachers Use Assessment Rubrics \(A242 \)
- How Assessment Rubrics Enhance Instruction \(A242 \)
- Sources of Assessment Rubrics \(A242 \)
- Student Benefits \(A243 \)
- The Development Process \(A243 \)

Appendix 6: Assessment Rubrics and General Learning Outcomes \(A249 \)
6.1 Rubric for the Assessment of Class Presentations \(A251 \)
6.2 Rubric for the Assessment of a Research Project \(A252 \)
6.3 Rubric for the Assessment of a Decision-Making Process Activity \(A253 \)
6.4 Lab Report Assessment \(A255 \)
6.5 Observation Checklist—Scientific Inquiry Conducting a Fair Test \(A256 \)
6.6 Assessing Region Explanations \(A257 \)
6.7 Peer/Self Assessment Sheet for Poster Project in Solving an Environmental Problem \(A258 \)
6.8 Rubric for Student Presentation \(A259 \)
6.9 Rubric for Map Drawing \(A260 \)
6.10 Rubric for Research Skills \(A261 \)
6.11 General Learning Outcomes \(A262 \)

Appendix 7: In Motion—Teacher Resource Guide \(A265 \)
- In Motion Preface \(A267 \)
- Chapter 1 Introduction \(A269 \)
- Chapter 2 Analyzing Motion \(A273 \)
- Chapter 2 Analyzing Motion: Enrichment \(A291 \)
- Chapter 2 Analyzing Motion: Enrichment Solutions \(A325 \)
- Chapter 3 Inertia \(A349 \)
Chapter 4 Forces and Motion A359
Chapter 5 Momentum and Energy A377
Chapter 6 Braking A393
Chapter 7 Driving Responsibly A405
In Motion Online Webquests A413

References R1