CONTENTS

Acknowledgements iii

Introduction 1
 Background 1
 Vision for Scientific Literacy 1
 The Vision of *Senior 4 Physics: A Foundation for Implementation* 1
 Goals for Canadian Science Education 2
 Beliefs about Learning, Teaching, and Assessing Science 2
 Changing Emphases in Science Education Content Delivery 3
 Changing Emphases to Promote Inquiry 3

Section 1: Manitoba Foundations for Scientific Literacy
 The Five Foundations 3
 Nature of Science and Technology 4
 Science, Technology, Society, and the Environment (STSE) 6
 Scientific and Technological Skills and Attitudes 9
 Essential Science Knowledge 12
 The Unifying Concepts 13
 Kindergarten to Senior 3 Physics Topic Chart 15

Section 2: Implementation
 The Senior Years Student and the Science Learning Environment 3
 Characteristics of Senior 4 Learners 3
 Effective Teaching in Physics: What the Research Says to Teachers 14
 Unit Development in Physics 16
 A View of Physics Education: Toward Modes of Representation 17
 The Modes of Representation 18
 The Importance of the Modes of Representation 21
 Toward an Instructional Philosophy in Physics 23

Section 3: Assessment in Senior 4 Physics
 Characteristics of Effective Assessment 4
 Types of Assessment 10
 Assessment Strategies 11
Section 4: Document Organization

Guide to Reading Specific Learning Outcomes and Document Format 3
Document Format 4
Guide to Reading Specific Learning Outcomes 6
Skills and Attitudes Outcomes Overview 7
Specific Learning Outcomes Overview 9

Unit 1: Mechanics

Topic 1.1: Kinematics 3
Topic 1.2: Dynamics 15
Topic 1.3: Momentum 25
Topic 1.4: Projectile Motion 37
Topic 1.5: Circular Motion 47
Topic 1.6: Work and Energy 59

Unit 2: Fields

Topic 2.1: Exploration of Space 3
Topic 2.2: Low Earth Orbit 17
Topic 2.3: Electric and Magnetic Fields 37

Unit 3: Electricity

Topic 3.1: Electric Circuits 3
Topic 3.2: Electromagnetic Induction 19

Unit 4: Medical Physics

Topic 4.1: Medical Physics 3

Appendices

Appendix 1: Mechanics

1.1: Derivations for Constant Motion 3
1.2: Category Concept Map 7
1.3: Kinematics Problem Set 8
1.4: Inclined Planes 12
1.5: Momentum and Impulse 16
1.6: Collisions in Two Dimensions 18
1.7: Projectiles 22
1.8: Force-Work Relationships 24
1.9: Centrifuge Demonstration 26
Appendix 2: Fields
2.1: Charges Moving Between or Through Parallel Plates 27
2.2: Space Exploration Issues 29

Appendix 3: Electricity
3.1: The Historical Development of Ohm’s Law 31
3.2: Power, Resistance, and Current 35
3.3: Kirchoff’s Contribution 39
3.4: Electromagnetic Induction 45
3.5: Faraday’s Law 46

Appendix 4: Medical Physics
4.1: “Get a Half-Life” 49
4.2: Alpha Decay 51
4.3: Beta Decay 52
4.4: Gamma Radiation 53
4.5: Radioisotopes and Their Uses in the Diagnosis or Treatment of Illness 54

Appendix 5: Developing Assessment Rubrics in Science
The Nature, Purpose, and Sources of Assessment Rubrics for Science 55
Developing Rubrics in Collaboration with Students 58

Appendix 6: Assessment Rubrics
Rubric for the Assessment of Class Presentations 63
Rubric for the Assessment of a Research Project 64
Rubric for the Assessment of a Decision-Making Process Activity 65
Lab Report Assessment 67
Observation Checklist—Scientific Inquiry: Conducting a Fair Test 68
Rubric for Student Presentation 69
Rubric for Research Skills 70

Appendix 7: General Learning Outcomes 71

Appendix 8: Specific Learning Outcomes 73

Bibliography