CONTENTS

Acknowledgements iii

Introduction 1
Background 1
Vision for Scientific Literacy 1
The Vision of *Senior 3 Physics: A Foundation for Implementation* 2
Goals for Canadian Science Education 2
Beliefs about Learning, Teaching, and Assessing Science 2
Changing Emphases in Science Education Content Delivery 3
Changing Emphases to Promote Inquiry 3

Section 1: Manitoba Foundations for Scientific Literacy
The Five Foundations 3
Nature of Science and Technology 4
Science, Technology, Society, and the Environment (STSE) 6
Scientific and Technological Skills and Attitudes 9
Essential Science Knowledge 12
The Unifying Concepts 14
Kindergarten to Senior 2 Topic Chart 16

Section 2: Implementation
The Senior Years Student and the Science Learning Environment 3
Characteristics of Senior 3 Learners 3
Effective Teaching in Physics: What the Research Says to Teachers 14
Unit Development in Physics 16
A View of Physics Education: Toward Modes of Representation 17
The Modes of Representation 18
The Importance of the Modes of Representation 21
Toward an Instructional Philosophy in Physics 23

Section 3: Assessment in Senior 3 Physics
Characteristics of Effective Assessment 4
Types of Assessment 10
Assessment Strategies 11
Section 4: Document Organization

Guide to Reading Specific Learning Outcomes and Document Format 3
Document Format 4
Guide to Reading Specific Learning Outcomes 6
Overview 7

Topic 1: Waves

Topic 2: The Nature of Light

Topic 3: Mechanics

Topic 4: Fields

Appendices

Appendix 1: Waves
 1.1: Strobe Template 3
 1.2: Concept Map for Wave Equation Variables 4
 1.3: Superposition of Waves 5
 1.4: Waves in One Dimension 7
 1.5: Derivation of Snell’s Law 11
 1.6: Circular Wave Patterns 14
 1.7: Interference Pattern from Two Point Sources 16
 1.8: Moiré Patterns 17
 1.9: Data Table for Speed of Sound 19
 1.10 Sound Intensity Levels Table 20

Appendix 2: The Nature of Light
 2.1: Wave-Particle Model of Light—Models, Laws, and Theories 21
 2.2: The Mystery Container 24
 2.3: Astronomy with a Stick 26
 2.4: Chart for Evaluating the Models of Light 27
 2.5: Jupiter and Its Moon Io 28
 2.6: Ole Christensen Rømer: The First Determination of the Finite Nature of the Speed of Light 29
 2.7: Ole Rømer and the Determination of the Speed of Light 32
 2.8: Why Were Eclipse Events at Jupiter Important to 17th-Century Science? 42
 2.9: Becoming Familiar with Ionian Eclipses 43
 2.10: Simulating Reemer’s Eclipse Timings Using Starry Night Backyard 47
 2.11: Contributions to the Determination of the Speed of Light 55
Appendix 3: Mechanics
3.1: Working with the Modes of Representation 57
3.2: A Vector Journey 59
3.3: Journal Entry on Vectors 61
3.4: A Vector Sampler 62
3.5: Analysis of Data Using Microsoft Excel 63
3.6: Describing Motion in Various Ways 66
3.7: Introducing Motion: Position, Time, Distance and Speed, Displacement, and Velocity 68
3.8: Motion: Interpreting Position-Time Graphs 78
3.9: Journal Entry: Kinematics (Position and Velocity) 84
3.10: Kinematics: Position, Velocity, and Acceleration Graphs 87
3.11: Kinematics and Graphing Skills Builder 89
3.12: Kinematics: Position, Velocity, and Acceleration Graphs, and Their Equations 91
3.13: Kinematics Sampler: Graphs, Equations, and Problem Solving 93
3.14: Kinematics Graphs Transformation Organizer 98
3.15: Journal Entry: Dynamics and Diagrams 99
3.16: Free-Body Diagrams: Linear Motion 101
3.17: Free-Body Diagrams 2: Linear Motion 102

Appendix 4: Fields
4.1: Vertical Motion at the Earth's Surface 103
4.2: Journal Entry: Gravitational Fields 105
4.3: Student Sampler: Magnetic Fields 106
4.4: Student Article Analysis—Scientific Fraud? 108
4.5: William Gilbert and the Earth's Magnetic Field 114

Appendix 5: Developing Assessment Rubrics in Science
The Nature, Purpose, and Sources of Assessment Rubrics for Science 121
Developing Rubrics in Collaboration with Students 124
Appendix 6: Assessment Rubrics
Rubric for the Assessment of Class Presentations 129
Rubric for the Assessment of a Research Project 130
Rubric for the Assessment of a Decision-Making Process Activity 131
Lab Report Assessment 133
Observation Checklist—Scientific Inquiry: Conducting a Fair Test 134
Rubric for Student Presentation 135
Rubric for Research Skills 136

Appendix 7: General Learning Outcomes 137

Bibliography