Grade 12
Pre-Calculus Mathematics
Achievement Test

Booklet 2

January 2024

[^0]Copyright © 2024, the Government of Manitoba, represented by the Minister of Education and Early Childhood Learning.

Manitoba Education and Early Childhood Learning
Winnipeg, Manitoba, Canada
All images found in this resource are copyright protected and should not be extracted, accessed, or reproduced for any purpose other than for their intended educational use in this resource.

Permission is hereby given to reproduce this resource for non-profit educational purposes provided the source is cited.
This resource will be available on the Manitoba Education and Early Childhood Learning website at www.edu.gov.mb.ca/k12/assess/archives/index.html.

Websites are subject to change without notice.
Disponible en français.
While the department is committed to making its publications as accessible as possible, some parts of this document are not fully accessible at this time.

Available in alternate formats upon request.

Grade 12 Pre-Calculus Mathematics Achievement Test

DESCRIPTION

Time Required to Complete the Test: $\mathbf{3}$ hours
Additional Time Allowed: $\mathbf{3 0}$ minutes
Numbers and Marks by Question Type

	Selected Response	Constructed Response	Marks
Booklet 1	-	15	33
Booklet 2	$\mathbf{8}$	$\mathbf{2 4}$	$\mathbf{5 7}$
Total	8	39	$\mathbf{9 0}$

Note that diagrams and graphs provided in the test booklets may not be drawn to scale.

DIRECTIONS

Selected Response Questions

- Calculators are not allowed for this part of the test.
- You may use the spaces beside each question for rough work.
- Provide only one answer per question.
- There is no penalty for guessing.
- Record your answers on the sheet provided.

Constructed Response Questions

- Calculators are not allowed for this part of the test.
- Write each solution in the space provided.
- For full marks, your answer must show all pertinent diagrams, calculations, and explanations.
- Your solutions should be neat, clear, and well organized.

No marks will be awarded for work done on this page.

Question 16

1 mark

Identify the range of the function $g(x)=\frac{1}{2} f(x+1)$, given that the range of the function $y=f(x)$ is $[-6,4]$.
a) $[-12,8]$
b) $[-7,3]$
c) $[-5,5]$
d) $[-3,2]$

Identify the value of a, given that there are 11 terms in the expansion of $\left(3 x^{4}-y\right)^{2 a}$.
a) 5
b) 6
c) 10
d) 11

Identify the angle that best represents $\theta=-\frac{6 \pi}{5}$.
a)

c)

Identify a possible value for n, given the graph of $y=-\frac{1}{2}(x+2)^{2}(x-1)^{n}$.
a) 1
b) 2
c) 3
d) 4

Question 20
1 mark
Identify the statement that is false, given $g(x)=\frac{8 x^{2}}{x^{2}-16}$.
a) the graph of $g(x)$ has one x-intercept.
b) the graph of $g(x)$ has a point of discontinuity (hole) at $x=0$.
c) the graph of $g(x)$ has two vertical asymptotes.
d) the graph of $g(x)$ has a horizontal asymptote at $y=8$.

Question 21

1 mark
Identify the equivalent form of $\log _{a}\left(\frac{1}{x^{2}}\right)$.
a) $-2 \log _{a} x$
b) $1-2 \log _{a} x$
c) $2 \log _{a} x$
d) $-2 \log _{a}\left(\frac{1}{x}\right)$

Question 22

1 mark
Identify which one of the following expressions is equivalent to ${ }_{13} C_{6}$.
a) ${ }_{13} P_{6}$
b) ${ }_{13} C_{7}$
c) ${ }_{12} P_{7}$
d) ${ }_{12} C_{6}$

Identify the equation of $h(x)=f(x)-g(x)$, given $f(x)=x+5$ and $g(x)=4 x+1$.
a) $h(x)=-3 x+6$
b) $h(x)=-3 x+4$
c) $h(x)=3 x+6$
d) $h(x)=3 x-4$

Question 24

Determine the equation of the radical function represented by the graph.

$y=$ \qquad

Question 25

Determine the exact value of x.

$$
\sec \left(\frac{2 \pi}{3}\right)\left(\sin \left(-\frac{5 \pi}{3}\right)\right)(x)=3
$$

Sketch the graph of $y=2^{-x}-3$.

Given the graph of $y=g(x)$, sketch the graph of $y=\frac{1}{g(x)}$.

The graph of $g(x)$ has already been drawn for your reference.
No marks will be awarded for the graph of $g(x)$.

Determine the exact value of $\tan \left(\frac{\pi}{12}\right)$.

Explain why the graph of $g(x)=\frac{3}{x^{2}+4}$ does not have a vertical asymptote.

Solve, algebraically.

$$
\log _{3} x+\log _{3}(x+8)=2
$$

Sketch at least one period of the graph of the function $y=\sin \left(3\left(x+30^{\circ}\right)\right)-1$.

Explain why the domain of the function, $f(x)=\log (x-3)$, is $x>3$.

Sketch the graph of $p(x)=-(x-3)(x+1)^{2}(x-5)$.

Given that $\sin \theta=-\frac{2}{3}$ and $\tan \theta>0$, determine the exact value of $\sin 2 \theta$.

Justify whether $\frac{5 \pi}{8}$ and $-\frac{11 \pi}{4}$ are coterminal angles.

Sketch the graph of $f(x)=\frac{-2 x(x+1)(x-3)}{2 x}$.

Given $\frac{\sin \theta+\cos \theta \csc \theta}{\sin \theta}$, determine the non-permissible values of θ, where $\theta \in \mathbb{R}$.

Write an equation of a rational function that has a horizontal asymptote at $y=0$ and a vertical asymptote at $x=6$.

Question 39

Given the functions $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}$,
a) state the equation of $g(f(x))$.
$g(f(x))=$ \qquad
b) sketch the graph of $g(f(x))$.

Suzanne was asked to determine the value of $\tan \theta$, given that $\sec \theta=-\frac{8}{3}$ and θ terminates in quadrant II.

Her solution:

$$
\begin{aligned}
(-3)^{2}+y^{2} & =(8)^{2} \\
y^{2} & =55 \\
y & =\sqrt{55} \\
\tan \theta & =\frac{\sqrt{55}}{3}
\end{aligned}
$$

Describe her error.

Given the graph of $y=f(x)$, sketch the graph of $y=\sqrt{f(x)}$.

The graph of $f(x)$ has already been drawn for your reference. No marks will be awarded for the graph of $f(x)$.

The point $P(\theta)=(0,-1)$ lies on the unit circle. State the angle θ, over the interval $[2 \pi, 4 \pi]$.

Describe how the transformations of $f(x)$ on the graphs of $g(x)=f(3 x-6)$ and $h(x)=f(3(x-6))$ are different.

Question 44

a) 1 mark b) 1 mark
a) Solve.

$$
\sqrt{2 x+5}-3=0
$$

b) Describe how the solution in a) relates to the graph of $y=\sqrt{2 x+5}-3$.

Question 45

3 marks 139
Determine all of the zeros of the function $p(x)=x^{3}-2 x^{2}-9 x+18$.

Given that the point $\left(\frac{\sqrt{23}}{6}, y\right)$ is on the unit circle, determine the exact value(s) of y.

State one zero of the function $y=\tan x$.

No marks will be awarded for work done on this page.

No marks will be awarded for work done on this page.

[^0]: Grade 12 pre-calculus mathematics achievement test. Booklet 2. January 2024

 This resource is available in print and electronic formats.
 ISBN: 978-0-7711-6383-8 (print)
 ISBN: 978-0-7711-6385-2 (pdf)

